Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации


Назначение основных видов химико-термической обработки

Цементация — процесс поверхностного насыщения стали углеродом при температуре 900—950°С. Цементации подвергают малоуглеродистые и низколегированные стали (менее 0,2% например, стали 12ХНЗА, 18ХНВА и др.), реже легированные и высокоуглеродистые стали. Этот процесс с последующей термообработкой позволяет получить на деталях высокую поверхностную твердость (до НRСэ65), прочность и износоустойчивость при вязкой сердцевине. Оптимальное содержание углерода в цементированном слое 0,8 ...0,9%, но не более 1,2%. Толщина слоя 0,5... 2,0 мм.
Цементацию проводят в газовой среде, в твердом карбюризаторе, жидкой среде и в различных пастах.

При твердой цементации детали загружают в ящики вместе с карбюризатором — веществом, содержащим углерод. Карбюризатором является смесь древесного угля с углекислыми солями (активаторами), вводимыми в количестве 20...40%. Добавление к углю углекислых солей (ВаСО3, Na2CO3, K2CO3) активизирует карбюризатор вследствие образования углекислого газа при разложении солей и реакции с углем (ВаСО3=ВаО+СО2; СО2+С=2СО). Оптимальный размер твердых частиц карбюризатора составляет 3...5 мм. Цементационный ящик изолируют от внешней среды, промазывая швы и щели специальными огнеупорными обмазками, в помещают в печь, нагретую до 900...950° С.

Для газовой цементации используют различные газы, содержащие углерод: окись углерода, предельные углеводороды (CH2n+2)— метан, этан, пропан, бутан, природный газ и др. Газ приготовляется отдельно. Температура газовой цементации 920...950°С.

В процессе цементации достигается лишь выгодное распределение углерода по глубине поверхностного слоя детали. Поэтому для получения высокой твердости и износоустойчивости поверхностного слоя при вязкой сердцевине детали после цементации подвергают закалке (850...900°С) и низкому отпуску (180...200°С). Цементированный слой детали после такой обработки имеет твердость НRCэ58...62, а сердцевина—порядка НRСэ 25...35.
Жидкая цементация используется для упрочнения сталей на малую глубину, до 0,2 мм. Она осуществляется в расплаве солей 75 ...85% Nа2СО3 и 10...15% NaCl с добавкой 6...10% карбида кремния (SiC); последний, взаимодействуя с содой, разлагается и выделяется атомарный углерод. Процесс ведется при температуре 815...850°С в зависимости от состава стали.
В последнее время имеются рекомендации о применении вакуумной цементации, проводимой при температуре 1040°С (нагрев. 45 мин, выдержка 32 мин, глубина слоя 1,25 мм) с последующей закалкой. Этот процесс имеет ряд преимуществ: высокая скорость цементации, хорошая чистота поверхности, нет внутреннего окисления, небольшой расход карбюризатора, нет необходимости в газоприготовительных установках. Процесс обработки полностью автоматизирован.

Цементированные детали из легированных сталей после закалки рекомендуется подвергать обработке холодом (-40...-70°С) с последующим низким отпуском. При обработке холодом продолжительность выдержки устанавливается не менее 2 ч. Обработка холодом проводится с целью завершения процесса превращения остаточного аустенита в структуре цементированного слоя в мартенсит, в результате чего повышаются твердость (HRCэ>61) и износоустойчивость цементированного слоя и стабилизируются размеры деталей.

Азотирование — насыщение поверхностного слоя стальных деталей азотом в среде аммиака или в смеси аммиака и азота при температуре 500...700°С.
Продолжительность азотирования 20—80час. Глубина азотированного слоя составляет 0,1...0,5 мм, твердость НV650...1100. При этом содержание азота в поверхностном слое достигает 10...12%.

Различают антикоррозионное и прочностное азотирование.

Азотирование применяется для повышения твердости, износостойкости, сопротивления усталости и коррозионной стойкости деталей, работающих в атмосфере, воде, паре и т. д.

Прочностное азотирование является наиболее эффективным методом резкого повышения поверхностной твердости, прочности, износоустойчивости. Высокая поверхностная твердость азотированных деталей не изменяется при повторных нагревах до 600—650°С. Азотируют детали машин, работающие в условиях трения и знакопеременных нагрузок, изгиба при вращении. Наиболее распространенной азотируемой сталью является 38ХМЮА, у которой после азотирования твердость достигает НV960…1150.

При температуре выше 400°С аммиак диссоциирует (по реакции НN3=3Н+N) с образованием атомарного азота. Атомарный азот поглощается и диффундирует в глубь поверхностного слоя, образуя при этом азотистые фазы.

Со многими легирующими элементами азот также образует нитриды.

Выбор температуры азотирования для стальных деталей определяется требованиями к глубине и твердости слоя. При высокой твердости и небольшой глубине слоя рекомендуется применять низкую температуру; при большой глубине и меньшей твердости применяется более высокая температура; при большой глубине и высокой твердости применяется двухступенчатый режим.

Нитроцементация (цианирование) — процесс одновременного насыщения поверхностного слоя стальных деталей азотом и углеродом. Нитроцементацию различают газовую а жидкую. При нитроцементации поверхностный слой насыщают углеродом и азотом из смеси аммиака (2...6%) и науглероживающими газами (светильный, пропан и др.) или жидкостями (пиробензин, синтин, триэтаноламин и др.). При цианировании насыщение осуществляется из солевых расплавов, содержащих цианистые соли NaCN, Са(СN)2, являющиеся поставщиками активных атомов углерода и азота. Нитроцементацию подразделяют на низкотемпературную (500...600°С) и высокотемпературную (800...950°С). Толщина упрочненного слоя 0,15...0,5 мм.
Время выдержки при газовой нитроцементации выбирают в зависимости от требуемой глубины слоя и температуры процесса. При высокотемпературной нитроцементации средняя скорость образования упрочненного слоя равна 0,08...0,1 мм/ч.

Толщина цианированного слоя зависит от времени выдержки. За 1 час выдержки при рабочей температуре 820 ...860°С можно получить слой толщиной 0,25...0,35 мм.

После цианирования (нитроцементации) детали подвергают закалке в масле или в воде и низкому отпуску при температуре 150…170°С в течение 5ч. Газовая нитроцементация конструкционных сталей обеспечивает твердость HRC 58.

Борирование — процесс поверхностного насыщения стальных (чугунных) деталей бором. Применяют для повышения поверхностной твердости (до НV1300—2500) низколегированных чугунов, углеродистых и высоколегированных сталей и специальных сплавов. Высокая поверхностная твердость деталей увеличивает их износостойкость, особенно в условиях абразивного износа.

Твердость борированной поверхности сохраняется при нагреве до температуры ~750°С. Борированный слой обладает повышенной жаростойкостью и кислотостойкостью.

Для деталей при небольших удельных нагрузках глубина борированного слоя может быть выбрана в пределах 0,25—0,4 мм, при больших удельных нагрузках глубина слоя не должна превышать 0,2 мм.

Диффузионные боридные покрытия используют прежде всего для повышения сопротивления износу. Они имеют также и более высокие жаростойкость, коррозионную и эрозионную стойкость, огнеупорность по сравнению с металлом основы. Борирование сталей и тугоплавких металлов осуществляют двумя методами: жидкофазным (электролизным и безэлектролизным) и газофазным.

Электролизное борированне проводится в расплаве буры. Иногда к ней добавляют присадки, снижающие температуру плавления, повышающие жидкотекучесть и способствующие интенсификации процесса насыщения, например, борный ангидрид, хлористый натрий, желтую кровяную соль. При этом методе катодом является борируемый металл, анодом—либо графитовые электроды, либо сам металлический тигель, в котором находится борирующий расплав.

Борирование в жидких средах без электролиза чаще проводят в расплаве буры. К ней добавляют небольшие количества веществ, способных служить восстановителями и образовывать вследствие разности электродных потенциалов с насыщаемым металлом гальванический элемент: металл—электролит—восстановитель.
Газовое борирование проводят двумя основными способами:
- способом порошков, при котором борируемые детали помещают в герметичный контейнер, засыпают боросодержащим порошком и нагревают в стандартных печах с воздушной, нейтральной или защищенной средой либо в вакууме;
- способом газофазного осаждения бора на поверхность нагретой детали по реакции восстановления галоидных соединений бора (ВС13, ВI3, В Вr3) водородом с последующей диффузией бора в металл детали, при этом способе используют также смеси борводородов с водородом.

Порошковое борирование проводится при температуре нагрева 930...1100°С. Для борировяния применяют порошки аморфного бора, карбид бора, ферробор, ферроборал, к которым иногда добавляют инертные наполнители (песок, глинозем, шамот).

Независимо от метода борирования скорость роста диффузионного слоя, его структура и фазовый состав определяются тремя основными факторами: температурой, продолжительностью процесса и активностью борирующей среды. Обычно температура борирования составляет 850…1100°С, а время выдержки 1…10ч.

Алитирование — процесс поверхностного насыщения стали или чугуна алюминием при температуре 660…1100°С для повышения жаростойкости. Алитированию подвергают в основном низкоуглеродистые стали.

Хромирование — процесс поверхностного насыщения стали и чугуна хромом при температуре 950…1050°С для повышения коррозионной стойкости, кислотоупорности и поверхностной твердости. Хромированию подвергают средне- и высокоуглеродистые стали. Хромированная сталь обладает окалиностойкостью до 800…850°С, высокой кислотоупорностью и высоким сопротивлением коррозии в растворе хлористого натрия.
Силицирование — процесс насыщения поверхности стали и чугуна кремнием при высоких температурах. Применяют для повышения стойкости изделий в азотной, серной, соляной кислотах.

Сульфидирование — процесс поверхностного насыщения деталей серой. Применяют для повышения износоустойчивости, улучшения приработки и противозадирных свойств деталей. Сульфидированию подвергают коленчатые валы, толкатели клапанов, направляющие салазки и винты токарных станков, прессформы для литья под давлением. Глубина слоя составляет 0,1 мм и выше.





 

Читайте также:

Классификация методов неразрушающего контроля

Влияние качества поверхности на эксплуатационные свойства деталей

Опоры, зажимы и установочные устройства. (ГОСТ 31107-81) Условные обозначения установочных элементов

Методы контроля деталей авиадвигателей в процессе производства

Производственные методы неразрушающего контроля

Вернуться в оглавление: Авиадвигателестроения

Просмотров: 6825

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 174.129.163.89