Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram


Аналого-цифровые преобразователи

<== предыдущая статья | следующая статья ==>

 

АЦП является одним из основных функциональных элементов ЦИП. АЦП представляет собой устройство, обеспечивающее квантование, дискретизацию и кодирование аналогового сигнала. Исходя из указанной совокупности процессов, происходящих в АЦП, его обобщенную структурную схему принято представлять в виде трех взаимосвязанных элементов.

Рис. 8.4 Структурная схема АЦП.

 

В дискретизирующем устройстве реализуется процесс преобразования непрерывного во времени сигнала в дискретный сигнал . При этом значения дискретного сигнала равны мгновенным значениям исходного непрерывного сигнала в фиксированные моменты времени. Промежутки времени меду двумя соседними дискретными моментами времени называют шагом дискретизации .

В ЦИП значение сигнала измеряется только в фиксированные моменты времени . Частота дискретизации выбирается из противоречивых условий. Действительно, чем больше частота дискретизации , тем меньше потери измерительной информации, но это приводит к ужесточению требований по быстродействию АЦП и, следовательно, к его усложнению.

Задача правильного выбора частоты дискретизации это фактически задача выбора интервала интерполяции . При этом под правильно выбранной частотой дискретизации следует понимать такую частоту, при которой погрешность интерполяции оказывается не более заданной. При решении этой задачи принято рассматривать различные интерполяционные полиномы.

В устройстве квантования происходит процесс замены мгновенных значений непрерывной по размеру величины . Разность между двумя соседними уровнями называется шагом квантования. При квантовании, как и при дискретизации, теряется часть информации о непрерывной измеряемой величине , следовательно, квантующее устройство, как и дискретизирующее, является источником методической погрешности.

 

Рис. 8.5 Квантование и дискретизация аналогового сигнала.

 

Из сравнения реальной и идеальной функции преобразования следует, что погрешность квантования:

. (8.1)

Из рисунка видно, что погрешность квантования имеет характер ломаной линии. При таком характере погрешности квантования СКО погрешности квантования, характеризуется средней мощностью за длительность одного импульса, определяется равенством:

. (8.2)

В кодирующем устройстве происходит представление дискретного значения сигнала в удобном для последующей обработки виде, например, в двоичной системе счисления. Таким образом, процесс преобразования аналогового сигнала в цифровой сигнал неизбежно приводит к возникновению погрешностей, вызванных процедурами дискретизации и квантования.

 

Рис. 8.6 Диаграммы, поясняющие погрешность квантования: а – реальная и идеальная функции преобразования; б – кривая погрешности квантования.

 

Погрешность АЦП определяется суммой методической и инструментальной составляющих:

. (8.3)

Методическая погрешность определяется принципом работы преобразователя и зависит от погрешности дискретизации и квантования, а инструментальная погрешность определяется нестабильностью работы узлов и элементов АЦП.

Кроме погрешности, АЦП характеризуются ценой деления, разрешающей способностью, чувствительностью, быстродействием.

В измерительных устройствах используют АЦП прямого и уравновешивающего преобразования.

Прямое АЦП реализуется одним из следующих способов:

· время - импульсное кодирование;

· амплитудное кодирование;

· пространственное кодирование;

· число – импульсное кодирование;

· частотно – импульсное кодирование.

В ЦИП наибольшее распространение получили время – импульсное и частотно – импульсное кодирование.

АЦП время – импульсного кодирования работает на основе последовательного преобразования измеряемого напряжения в пропорциональный ему временной интервал. В течение этого интервала времени на электронный счетчик поступают импульсы с известной частотой повторения, число которых пропорционально величине измеряемого постоянного напряжения.

Последовательность работы рассматриваемого АЦП поясняется временными диаграммами. При подаче на вход АЦП измеряемого напряжения по сигналу с устройства управления показания счетчика и ЦОУ сбрасывается, а генератор ГЛИН начинает формировать пилообразное напряжение. В это же время на выходе компаратора начинается формироваться импульс. При поступлении этого импульса на временной селектор последний открывается и пропускает на вход счетчика импульсы с генератора счетных импульсов. При достижении равенства напряжения ГЛИН и измеряемого напряжения формирование импульса на выходе компаратора прекращается, схема «И» закрывается и счет импульсов прекращается. В результате счетчик регистрирует некоторое число импульсов N за интервал времени, а ЦОУ отображает соответствующее ему число. В дальнейшем рассмотренная процедура работы продолжается.

 

Рис. 8.7 АЦП время-импульсного действия: а - структурная схема; б – временная диаграмма.

 

Длительность интервала подсчета импульсов:

. (8.4)

С другой стороны,

. (8.5)

После соответствующих преобразований получим:

. (8.6)

Поскольку значение численно соответствует скорости изменения пилообразного напряжения V, то

. (8.7)

Для конкретных схем АЦП значение выбирается равным , при этом:

. (8.8)

Суммарная погрешность АЦП данного типа определяется следующими причинами:

· погрешностью преобразования измеряемого напряжения в длительность прямоугольного импульса (нелинейность и нестабильность ГЛИН, погрешность компаратора);

· погрешностью преобразования интервала времени в код.

Общая погрешность такого АЦП составляет обычно 0,1 %.

Более помехоустойчивой является схема с двойным интегрированием (0,01%). Это объясняется тем, что рассматриваемый АЦП преобразует не мгновенное, а среднее значение входного напряжения.

<== предыдущая статья | следующая статья ==>





 

Читайте также:

Шунты, добавочные резисторы

Методы измерения магнитных величин

Методы измерений

Устройство и принцип работы аналоговых электромеханических измерительных приборов

Основные характеристики электронных осциллографов

Условные обозначения, наносимые на шкалу прибора электромеханической системы

Методы измерения параметров электрической цепи

Виды измерений

Виды ИИС

Резонансный метод измерения параметров элементов цепи

Организация проведения измерений

Методы и средства измерений электрических величин. Литература

Цифровые измерительные приборы

Общая характеристика методов и средств измерений

Вернуться в оглавление: Методы и средства измерений электрических величин

Просмотров: 3171

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.80.36.205