Студопедия
Обратная связь
Поделиться в соц. сетях:


ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ.

Задача на взаимное пересечение прямой и плоскости может быть сведена к одному из трех типов задач:

1. Обе геометрические фигуры проецирующего положения по отношению к плоскостям проекций (рис.4.4а и 4.4б).

Рис. 4.4 а Рис. 4.4 б

В этом случае искомый элемент - точка пересечения на чертеже уже есть, ее надо только выделить и обозначить.

2. Одна из заданных фигур проецирующего положения в пространстве, а другая - общего (рис.4.5а и 4.5б).

Рис.4.5а Рис.4.5б

В этом случае одна из проекций искомой точки пересечения на чертеже уже есть. Она принадлежит геометрической фигуре проецирующего положения, а другая ее проекция находится по принадлежности к фигуре не проецирующего положения.

3. Обе геометрические фигуры - линия и плоскость - общего положения в пространстве по отношению к плоскостям проекций. В этом случае задача решается с помощью вспомогательной секущей плоскости “ в качестве посредника”, которую проводят через заданную прямую.

На рис. 4.6а и 4.6б приведены примеры пересечения прямой l с плоскостью треугольника АВС и прямой а с плоскостью b, заданной следами.

Рис. 4.6а Рис.4.6б

 

Читайте также:

ПЛОСКОСТИ И ПРЯМЫЕ, КАСАТЕЛЬНЫЕ К КРИВОЙ ПОВЕРХНОСТИ В ДАННОЙ ТОЧКЕ

Две плоскости в пространстве будут взаимно перпендикулярными, если одна из них содержит прямую, перпендикулярную к другой плоскости.

ВЗАИМНОЕ КАСАНИЕ КРИВЫХ ПОВЕРХНОСТЕЙ

ЛИНИИ НАИБОЛЬШЕГО НАКЛОНА ПЛОСКОСТИ К ПЛОСКОСТЯМ ПРОЕКЦИЙ

ВИДЫ МНОГОГРАННИКОВ

Вернуться в оглавление: НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Просмотров: 609

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам