Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram


Абсолютные и средние показатели вариации и способы их расчета

Для характеристики  совокупностей  и  исчисленных  величин  важно знать, какая вариация изучаемого признака скрывается за средним.

Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.

Размах вариации - это разность между наибольшим () и  наименьшим () значениями вариантов.

Этот показатель улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.

Чтобы дать обобщающую характеристику распределению  отклонений, исчисляют среднее  линейное  отклонение d,  которое учитывает различие всех единиц изучаемой совокупности.

Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней,  без учета знака этих отклонений:

.

Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия -  это средняя арифметическая квадратов отклонений каждого значения признака от общей средней.  Дисперсия обычно  называется средним квадратом  отклонений и обозначается .  В зависимости от исходных данных дисперсия может вычисляться  по  средней  арифметической простой или взвешенной:
 —  дисперсия невзвешенная (простая);
 —  дисперсия взвешенная.
Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:
 —  среднее квадратическое отклонение невзвешенное;
 — среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).

Среднее квадратическое  отклонение  является  мерилом  надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Вычислению среднего  квадратического отклонения предшествует расчет дисперсии.

Если исходные данные представлены в виде интервального ряда распределения, то сначала надо определить дискретное значение признака,  а далее применить тот же метод, что изложен выше.

Техника вычисления дисперсии сложна, а при больших значениях вариант и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.

Свойства дисперсии.

  1.  Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.
  2.  Уменьшение или увеличение каждого значения признака на одну  и ту же постоянную величину А дисперсии не изменяет.
  3.  Уменьшение или увеличение каждого значения признака в какое-то число раз  к  соответственно  уменьшает или увеличивает дисперсию в  раз, а среднее квадратическое отклонение - в к раз.
  4.  Дисперсия  признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.





 

Читайте также:

Абсолютные и относительные величины

Территориальные индексы

Средние индексы

Априорный анализ и его роль в исследовании социально-экономических явлений

Порядок группировки

Вернуться в оглавление: Статистика

Просмотров: 7279

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам. Ваш ip: 54.158.109.89