Студопедия
Обратная связь


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации


1.3. Производство чугуна и стали.

Металлы и сплавы по химическому составу делятся на цветные (медь, алюминий, свинец ,бронза, латунь и др.) и черные (железо, сталь, чугун). В чистом виде металлы используются редко, а в основном -в виде сплавов.

Чугун и сталь это сплавы железа с углеродом, в которых неизбежно наличие примесей других химических элементов:

 Сталь: Fe + С ( < 2 % ) + примеси ( относительно немного);

Чугун: Fe + С ( > 2 % )+  примеси ( больше, чем у стали).

Что общего и в чем различия ( табл. 1.3) между этими сплавами?

Основа одна — железо. Главное отличие заключается в том, что чугун имеет повышенное содержание углерода (свыше 2 % в чугунах и до 2 % в сталях) Граница между этими сплавами проходит по содержанию углерода в сплаве .Так же больше во многих чугунах марганца, серы, фосфора и кремния.

Стали чаще всего более твердые, прочные и износостойкие. Чугуны же более хрупкие, но обладают хорошими литейными свойствами. Сталь является производной от чугуна., т.к. производство её в основном двух стадийное : из железных руд сначала получают чугун, далее из чугуна и стального лома получают сталь.

Таблица 1.3

Сравнительные показатели чугунов и сталей.

Наименование показателей

Чугун

Сталь

1

Содержание углерода, %

> 2 %

< 2 %

2

Содержание S, P, Mn, Si

Много *

меньше

3

Структура

ледобурит,….

аустенит,феррит,…

4

Хрупкость

более хрупкий *

 

5

Твердость

 

более твердая *

6

Прочность

 

выше *

7

Ковкость

 

выше * 

8

Литейные свойства

выше

 

9  

 Изготовляемые детали

станины, корпуса,

валы, шестерни,…

10

Технология изготовления

литье и механ. обраб.

прокатка и мех. обр.

                   * - чаще всего.

Железо в руде находится в виде окислов, оксидов, карбонатов и прочих химических соединений. Кроме того, в руде много ( до 30… 60 % ) пустой породы : кварцит ( песок ), глинистые вещества и др.

Основные железные руды :

1. Магнитный железняк Fe O — оксид ( до 65 % железа ). ( Соколовское и Сарбайское месторождения, Курская магнитная аномалия )

2. Красный железняк Fe O — оксид ( до 60 % железа ).  ( Криворожское месторождение, Курская магнитная аномалия )

3. Бурый железняк  n Fe O х mH 2 O — карбонат ( до 55 % железа ).

( Лисаковское месторждение )

4. Шпатовый железняк Fe C O 3 — углекислая соль ( до 40 % железа ).

( Криворожское месторождение )

Почти половина разведанных мировых запасов железа находится на территории государств СНГ. Добывалось и производилось чугуна и стали в бывшем СССР больше всех в мире . Причинами этого «достижения» были : несовершенство конструкций и низкая надежность машин и оборудования; низкое качество выплавляемых чугунов и сталей; огромные территории; большая протяженность дорог и коммуникаций; низкая эффективность сельскохозяйственного производства, ,строительных и дорожных работ. Всё это требовало намного больше металла, чем в других странах. И , кроме того ,зарытого металла в земле на стройках, брошенного на свалках, в лесах, болотах и на полях было больше всех в мире.

В историческом плане производство черных металлов развивалось по следующим этапам :

1.  Сыродутный процесс ( 1500 лет до н. э. ). Производительность процесса очень низкая, получали за 1 час всего до 0,5… 0,6 кг железа. В кузнечных горнах железо восстанавливалось из руды углём при продувке воздухом (рис. 1.19 ) с помощью кузнечных мехов.

Сначала при горении древесного угля образовывалась окись углерода

C + O2   Ù C O,

которая и восстанавливала чистое железо из руды

C O + Fe Ù Fe + C O2 .

В результате длительной продувки воздухом из кусочков руды получались практически без примесей кусочки чистого железа, которые сваривались между собой кузнечным способом в полосу, которые далее использовались для производства необходимых человеку изделий. Это технически чистое железо содержало очень мало углерода и мало примесей (чистый древесный уголь и хорошая руда) , поэтому оно хорошо ковалось и сваривалось и практически не корродировало. Процесс шел при относительно невысокой температуре (до 1100…1350 °С),металл не плавился, т. е. восстановление металла шло в твердой фазе. В результате получалось ковкое (кричное) железо. Просуществовал этот способ до XIV века, а в несколько усовершенствованном виде до начала XX века, но был постепенно вытеснен кричным переделом.

Отсюда следует, что исторически самым первым сварщиком металлов был

 кузнец, а самый первый способ сварки- это кузнечная сварка.


.

 
 

2. С увеличением размеров сыродутных горнов и интенсификацией процесса возрастало содержание углерода в железе, температура плавления этого сплава (чугуна) оказывалась ниже, чем у более чистого железа и получалась часть металла в виде расплавленного чугуна, который как отход производства вытекал из горна вместе со шлаком.

В XIV век в Европе был разработан двухступенчатый способ получения железа (маленькая домна, далее кричной процесс). Производительность увеличилась до 40 …50 кг/час железа. Использовалось водяное колесо для подачи воздуха. Кричный передел -это процесс рафинирования чугуна (снижение количества C, Si, Mn) с целью получения из чугуна кричного (сварочного) железа.

3.В конце  XVIII века в Европе начали использовать минеральное топливо в доменном процессе и в пудлинговом процессе. При пудлинговом процессе каменный уголь сгорает в топке, газ проходит через ванну, расплавляет и очищает металл. В Китае даже раньше, в X-ом  веке, выплавляли чугун, а далее получали сталь процессом пудлингования. Пудлингование- это очистка чугуна в пламенной печи. При очистке железные зерна собираются в комья. Пудлиновщик ломом много раз переворачивает массу и делит ее на 3…5 частей –криц. В кузнице или прокатной машине свариваются зерна и получают полосы и другие заготовки. Используются уже паровые машины вместо водяного колеса. Производительность возрастает до 140 кг сварочного железа в час.

4.В конце XIX века — почти одновременно внедряются три новых процесса получения стали : бессемеровский, мартеновский и томасовский. Производительность плавки стали возрастает резко ( до 6 тн/час).

5. В середине  XX века :внедряются кислородное дутье, автоматизация процесса и непрерывная разливка стали.

При сыродутном, кричном и пудлинговом процессах железо не плавилось ( технический уровень того времени не давал возможность обеспечить температуру его плавления). Продувка кислородом расплавленного металла в бессемеровском конверторе из -за резкого увеличения поверхности соприкосновения металла с окислителем (кислородом) в тысячу раз ускоряет химические реакции по сравнению с пудлинговой печью.

В сыродутном и кричном процессах получали одностадийным методом ковкое, сварочное железо (малоуглеродистую сталь), причём имеющее небольшое количество примесей, поэтому весьма стойкое к коррозии. Сейчас в стадии развития находится одностадийный процесс производства стали : обогащение руд (получение окатышей, содержащих 90… 95 % железа) и выплавка стали в электропечи.

 
 

Современное производство чугуна и сталей выполняется по следующей схеме (рис. 1.20).

Производство чугуна.

Чугун выплавляется в домнах. Это сложное инженерное сооружение, работающее непрерывно в течение 5..10 лет.

Печь работает по принципу противотока . Сверху загружается руда ,флюсы и кокс, а снизу подается воздух.. Кокс служит для нагревания и расплавления руды , а также участвует в восстановлении железа из окислов руды. В коксе должно быть минимум серы и фосфора. Флюсы (известняки, кремнеземы,..) необходимы для получения шлаков При сгорании топлива образуется окись углерода , которая и является главным восстановителем железа. Восстановление железа происходит от высших окислов к низшим и , в конечном итоге, к металлу:

Fe2 O3 ® Fe3 O4 ® Fe O ® Fe

окисью углерода СО и твердым углеродом С. Восстановление марганца , кремния и других элементов выполняется также коксом .

Продуктами доменного производства являются :

чугун передельный , содержащий 4…4,5 % С, 0,6…0,8 % Si, 0,25…1,0 % Mn , до 0,3 % S и  до 0,05 % Р;

чугун литейный , содержащий Si около 3 % ;

ферросплавы: ферросилиций ( 9 …13 % Si ) и ферромарганец ( 70 …75 % Mn ) , предназначенные для раскисления и легирования сталей;

шлаки, используемые для производства шлаковаты, шлакоблоков, цемента.

Производство стали.

Чтобы получить сталь из чугуна надо уменьшить в нем количество углерода, марганца , серы и фосфора. Сталь получают в кислородных конверторах, мартеновских печах и электропечах.

Конвертор (рис. 1.21) —это сосуд грушевидной формы, футированный внутри огнеупорным кирпичом и подвешенный на двух кронштейнах.

Жидкий чугун (1250…1400 °С), полученный в домне, с помощью ковша заливают в конвертор, Для получения шлака добавляют в конвертор железную руду и известь, боксит и плавиковый шпат. В конвертор снизу подается воздух, или сверху –кислород. Процесс получения стали проходит быстро, при этом отчетливо видны три периода (рис. 1.22) .

В первые  4 …5 минут процесса окисляется железо

Fe + O2 ® FeO.

Далее , образовавшаяся окись железа окисляет кремний и марганец :

Si + FeO ® SiO2 + Fe,

Mn+ FeO ® MnO2 + Fe.

Кремний и марганец окисляются также и кислородом:

Si + O2 ® SiO2,

Mn + O2  ® MnO2 .

При окислении углерода, кремния, марганца и др. примесей выделяется большое количество тепла, температура расплава увеличивается, а окислы  образуют шлак.

После того, как выгорят почти полностью Si и Mn наступает второй период бурного выгорания углерода

C + FeO ® Fe + CO,

характерный тем, что пока окись углерода. горит

CO + O2 ® CO2

над горловиной. будет яркое пламя.

Третий период наступает, когда над горловиной появляется бурый дым- признак того, что начало окисляться железо и процесс получения стали завершен.

 Кислород вдувается в конвертор сверху (давление до 1,2 МПа) на зеркало жидкого металла.. Температура при продувке кислородом выше, чем при продувке воздухом, поэтому кроме расплавленного чугуна можно использовать до 30 % железного скрапа и железной руды. При продувке кислородом в сплаве уменьшается содержание азота, время продувки сокращается по сравнению с продувкой воздухом в 2 раза и увеличивается производительность конвертора.

Мартеновское производство менее производительное, чем конверторное., но лучше регулируется процесс, используются чугунные чушки и металлолом. Мартен это регенеративная пламенная печь. Газ сгорает над плавильным пространством, где создается температура 1750… 1800 °С. Газ и воздух предварительно подогреваются ( до 1200…1250 °С) в регенераторах. За счет тепла сгоревших газов, выходящих в трубу. Два регенератора : один работает, а другой накапливает тепловую энергию. Для интенсификации процесса ванну продувают кислородом. Раскисление ванны проводят ферросилицием и феромарганцем в ванне, а окончательное –алюминием и ферросилицием в сталеразливочном ковше.

Сталь высокого качества  выплавляют в дуговых и индукционных электропечах. Процесс примерно такой же как и в мартеновской печи, но температура выше , поэтому можно получать в электропечах тугоплавкую сталь , содержащую хром, вольфрам и др. Два периода при выплавке электростали : окислительный (выгорают Si, Mn, C, Fe) за счет кислорода, воздуха и оксидов шихты. ; восстановительный — раскисление стали, удаление серы. Для этого вводят флюс, состоящий из извести и плавикового шпата.

Индукционная плавка  применяется обычно для переплавки сталей и получения высоколегированных и специальных сталей в условиях вакуума или специальной регулируемой атмосферы.





 

Читайте также:

2.16. Контроль качества сварки.

1.4. Разливка стали.

2.2. Тепловые процессы при сварке.

Ультразвуковой метод контроля

2.10. Контактная электрическая сварка.

Вернуться в оглавление: Металлы и сварка

Просмотров: 1453

 
 

© studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам