Генераторы постоянного тока и их характеристики

Уравнение напряжений для цепи якоря генераторов постоянного тока имеет вид

, (6.17)

где – суммарное сопротивление цепи якоря, включающее сопротивления самой обмотки якоря, обмоток добавочных полюсов и компенсационной и др.; – падение напряжения на щеточном контакте на пару щеток.

В генераторе электромагнитный момент направлен встречно вращающему моменту приводного двигателя. Электрическая мощность на выходе генератора меньше механической мощности приводного двигателя на величину потерь мощности . Кпд генератора равен

. (6.18)

Одной из характеристик генераторов постоянного тока является номинальное изменение напряжения при сбросе нагрузки

, (6.19)

где – напряжение на выходе генератора в режиме холостого хода.

Величина зависит от способа возбуждения генератора. Для генератора независимого возбуждения ; генератора параллельного возбуждения . У генератора смешанного возбуждения в зависимости от способа включения обмоток возбуждения величина зависит от соотношения витков в этих обмотках. Она может равняться нулю или иметь отрицательное значение. При этом напряжение на выходе такого генератора возрастает и компенсирует падение напряжения в проводах, соединяющих генератор и нагрузку [2].

Эксплуатационные свойства генераторов постоянного тока анализируются с помощью характеристик. Характеристики устанавливают зависимости между основными параметрами и величинами, определяющими работу машин. Они могут быть получены экспериментальным и расчетным путем. Для расчета необходимо знать значения конструктивных параметров и электромагнитных нагрузок.

Основная группа характеристик генераторов постоянного тока строится при постоянной частоте вращения якоря, т.е. . В эту группу входят сле­дующие характеристики:

- характеристика холостого хода при ;

- внешняя характеристика при ;

- регулировочная характеристика при ;

- характеристика короткого замыкания при ;

- нагрузочная характеристика при .

Вид характеристики генератора определяется способом его воз­буждения [1].

6.8.1. Генератор независимого возбуждения. Характеристика холостого хода показана на рис. 6.29. Она имеет форму кри­вой намагничивания. Кривизна характеристики определяется насыщением магнитной системы машины. Неоднозначность при увеличении и уменьшении тока возбуждения объясняется явлением гистерезиса. Генератор обычно проектируют так, чтобы точка N, соответствующая его номинальному напряжению, находилась на изломе кривой на­магничивания. Ниже точки N эдс генератора неустойчива, а выше – снижается эффективность его регулирования. Эдс составляет номинального напряжения. Она является следствием остаточной намагниченности магнитопровода. Характеристика холостого хода позволяет определить соответствие расчетных и опытных данных. Она является основной при исследовании эксплуатационных свойств машины.

Внешняя характеристика снимается при постоянном токе возбуждения . Рост тока нагрузки приводит к снижению на­пряжения на зажимах якоря генератора (рис. 6.30). Это происходит под действием раз­магничивающей поперечной реакции якоря и падения напря­жения на внутреннем сопротивлении машины . Чем больше величина , тем более круто падающей будет внешняя характеристика и больше значение .

Регулировочная характеристика (рис.6.31) показывает, как надо изменять ток возбуждения, чтобы напряжение на зажимах генератора оставалось постоянным. С увеличением тока нагрузки растет размагничивающее действие реакции якоря и падение напря­жения на . Для компенсации их влияния ток возбуждения увеличивают. Чем больше величина , тем больше величина изменения этого тока. Она составляет 15 – 25% его номинального значения. Величина . Разница объясняется насыщением магнитной цепи машины [19].

Для получения характеристики короткого замыкания об­мотку якоря закорачивают. Ток в ней доводят до значения . Ток в обмотке возбуж­дения при этом относительно мал. Магнитная цепь машины не насыщена. Характеристика практи­чески прямолинейна. Она аналогична по виду характеристике короткого замыкания синхронной машины (рис. 5.15) и не проходит через начало координат вследствие остаточного намагничивания стали магнитопровода генератора при [1].

Нагрузочная характеристика 1 (рис. 6.32) проходит ниже характеристики холостого хода 2. Разность ординат этих кривых объясняется действием раз­магничивающей поперечной реакции якоря и падения напря­жения на внутреннем сопротивлении машины . Влияние этих факторов можно оценить с помощью характеристического треугольника АВС.

Внутренняя характеристика машины (кривая 3) при . Отрезок OD соответствует току возбуждения, который обеспечивает номи­нальный режим работы.Отрезок BD – эдс в этом режиме. Отрезок CD характеризует падение напряжения на внутреннем сопротивлении генератора . Эдс в режиме холостого хода (отрезок АF) обеспечивается меньшим то­ком возбуждения (отрезок 0F). Избыток тока возбуждения (отрезок FD) необходим для компенсации размагничивающего действия реакции якоря. С помощью характеристики холостого хода и характеристического треугольника можно построить внешнюю и регулировочную характеристики [8].

6.8.2. Генератор параллельного возбуждения. В магнитной цепи существует остаточный магнитный поток . Если якорь вращать в остаточном магнитном поле, то в его обмотках наводится эдс . Под действием этой эдс в замкнутом контуре возникает ток возбуждения, который образует добавочный магнитный поток. Если этот поток действует согласно с остаточным потоком, то результирующий магнитный поток возрастает и происходит самовозбуждение. Процесс самовозбуждения может развиваться только в одном направлении. Поэтому характери­стика холостого хода генератора параллельного возбуждения может быть построена только в од­ном квадранте (рис. 6.33). Расчетные характеристики холостого хода у генераторов независимого и параллельного возбуждения практически одинаковые. Ток возбуждения состав­ляет всего несколько процентов от тока нагрузки и не оказы­вает существенного влияния на действие реакции якоря и падение напря­жения .

Внешняя характеристика генератора параллельного возбуждения показана на рис. 6.34. Снижение напряжения на выводах якорной обмотки происходит не только из-за влияния падения напряжения внутри машины и размагни­чивающего действия реакции якоря, но и из-за снижения тока возбуждения . После значения тока нагрузки напряжение уменьшается. Магнитная цепь машины становится менее насыщенной. В результате незначи­тельное уменьшение тока возбуждения вызывает ещё большее уменьшение магнитного потока, эдс якоря и тока . Величина больше, чем при независимом возбуждении. Значение тока называется установившимся током короткого замыкания. Характеристики регулировочная, нагрузочная и короткого замыкания снимаются аналогично указанным характеристикам генератора независимого возбуждения.

6.8.3. Генераторы последовательного возбуждения и смешанного возбуждения. Генератор последовательного возбуждения практически не используется для выработки электроэнергии, поскольку у него . В процессе самовозбуждения наступает насыщение магнитной цепи. Действие реакции якоря и падение напря­жения приводят к снижению напряжения . Генераторный режим машин последовательного возбуждения используется на электрифицированном транспорте. Обмотку возбуждения подключают к независимому источнику [19].

В генераторе смешанного возбуждения основную роль играет параллельная обмотка возбуждения. Она создает 60 – 85% магнитодвижущей силы, необходимой для возбуждения. Последовательная обмотка возбуждения предназначена для формирования желаемых внешних характеристик и чаще всего включается согласно с обмоткой якоря машины. В режиме холостого хода последова­тельная обмотка возбуждения не задействована. При этом характери­стика холостого хода аналогична характеристике генератора параллельного возбуждения. Внешние и регулировочные характеристики генераторов с различными схемами возбуждения показаны на рис. 6.35. Генератор смешанного согласного возбуждения имеет наиболее благоприятную внешнюю характеристику [9].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: