Процессы при нагреве деформированного металла

Рекристаллизация является диффузионным процес­сом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллиза­ции металл состоит из новыхравноосных зерен. Более высокий нагрев приводит к развитию собирательной ре­кристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше тем­пература нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создаются условия для образования крупнозернистого металла. Собирательная рекристаллизация также протекает не­равномерно и практически начинается значительно рань­ше, чем закончится рекристаллизация обработки.

Рисунок 1 – Схема влияния на величину рекристаллизованного зерна

температуры (а) и продолжительности нагрева (б)


Размер рекристаллизованного зерна оказывает боль­шое влияние на свойства металла. Наилучшее сочетание прочности и пластичности наблюдается в мелкозерни­стых сталях. На величину рекристаллизованного зерна оказывает влияние температура рекристаллизационного отжига (рисунок1, а), продолжительность процесса (рисунок 1, б), степень предварительной деформации и химический состав металла. Чем выше темпера­тура отжига и длительнее процесс, тем больше размеррекристаллизованного зерна.

Рисунок 1 – Схема влияния температуры на механические свойства и

структуру деформированного металла

При нагреве по достижении температуры начала рекристаллизации (tнр) предел прочности и особенно предел текучести резко снижаются, а пластичность увеличивается. В процессе собирательной рекристаллизации механические свойства практически не изменяются. Более высокий нагрев сопровождается дальнейшим ростом зерна и уменьшением пластичности вследствие перегрева.

Деформированный металл по сравнению с недеформированным имеет повышенный запас энергии и находится в неравновесном, термодинамически неустойчивом состоянии. В таком металле даже при комнатной темпе­ратуре могут самопроизвольно протекать процессы, при­водящие его в более устойчивое состояние. Однако, если деформированный металл нагреть, то скорость этих про­цессов возрастает. Небольшой нагрев (для железа 300-400°С) ведет к снятию искажений кристаллической ре­шетки, но микроструктура остается без изменений, зерна по-прежнему вытянуты. Прочность при этом несколько; снижается, а пластичность повышается. Такая обработка называется возвратом или отдыхом.

При дальнейшем повышении температуры подвижность атомов возрастает и среди вытянутых зерен идет интенсивное зарождение и рост новых равноосных сво­бодных от напряжений зерен. Зародыши новых зерен возникают в участках с наиболее искаженной кристаллической решеткой, с повышенным уровнем свободной энергии, термодинамически наименее устойчивых. Новые зерна растут за счет старых, вытянутых, до их столкно­вения друг с другом и до полного исчезновения вытя­нутых зерен. Это явление называется рекристалли­зацией (первичной).

Рекристаллизация является диффузионным процес­сом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллиза­ции металл состоит из новых равноосных зерен. Более высокий нагрев приводит к развитию собирательной ре­кристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше ­температура нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создают условия для образования крупнозернистого металла.

6. Диаграмма состояния железо-цементит

В системе железо — цементит существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит — Твёрдый раствор внедрения углерода в α-железе с ОЦК (объёмно-центрированной кубической) решёткой.

Феррит имеет переменную предельную растворимость углерода: минимальную — 0,006 % при комнатной температуре (точка Q), максимальную — 0,02 % при температуре 727 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрически эквивалентно) на середине рёбер куба, а также в дефектах решетки.

При температуре выше 1392 °C существует высокотемпературный феррит, с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка I)

Свойства феррита близки к свойствам чистого железа. Он мягок (твердость — 130 НВ) и пластичен, магнитен (при отсутствии углерода) до 770 °C.

3. Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с ГЦК (гране-центрированной кубической) решёткой.

Атомы углерода занимают место в центре гранецентрированной кубической ячейки.

Предельная растворимость углерода в аустените — 2,14 % при температуре 1147 °C (точка Е).

Аустенит имеет твёрдость 200—250 НВ, пластичен, парамагнитен.

При растворении других элементов в аустените или в феррите изменяются свойства и температурные границы их существования.

4. Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит фаза метастабильная и при длительным нагреве самопроизвольно разлагается с выделением графита.

7. Классификация и маркировка сталей и чугунов



  1. По химическому: составу: углеродистые и легированные.

  2. По содержанию углерода:

    • низкоуглеродистые, с содержанием углерода до 0,25 %;

    • среднеуглеродистые, с содержанием углерода 0,3…0,6 %;

    • высокоуглеродистые, с содержанием углерода выше 0,7 %

  3. По равновесной структуре: доэвтектоидные, эвтектоидные, заэвтектоидные.

  4. По качеству. Количественным показателем качества является содержания вредных примесей: серы и фосфора:

    • , – углеродистые стали обыкновенного качества:

    • – качественные стали;

    • – высококачественные стали.

  5. По способу выплавки:

    • в мартеновских печах;

    • в кислородных конверторах;

    • в электрических печах: электродуговых, индукционных и др.

  6. По назначению:

    • конструкционные – применяются для изготовления деталей машин и механизмов;

    • инструментальные – применяются для изготовления различных инструментов;

    • специальные – стали с особыми свойствами: электротехнические, с особыми магнитными свойствами и др.

8. Диаграмма изотермического превращения аустенита

Изотермическое превращение аустенита - это превращение переохлаждённого аустенита при постоянной температуре.

Превращение аустенита в перлит заключается в распаде аустенита - твёрдого раствора углерода б у-железег на почти чистое а-железо и цементит.

При температуре равновесия A1 превращение аустенита в перлит невозможно, так как при этой температуре свободные энергии исходного аустенита и конечного перлита равны. Превращение может начаться лишь при некотором переохлаждении.

На рисунке показано время превращения аустенита в перлит в зависимости от степени переохлаждения, т.е. превращение переохлаждённого аустенита при постоянной температуре. Поэтому такие диаграммы обычно называют диаграммами изотермического превращения аустенита. Кривые на диаграмме изотермического превращения аустенита имеют вид буквы С: поэтому их часто называют С-образными или просто С-кривыми. Горизонтальная линия М показывает температуру начала бездиффузного мартенситного превращения.

Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходил процесс его распада.

Связь между характером изотермического превращения аустенита, содержанием углерода и температурой показывает обобщённая диаграмма превращения переохлаждённого аустенита в углеродистой стали.

В зависимости от содержания углерода и степени переохлаждения мы имеем такие области превращений аустенита:

- превращение аустенит — перлит:

- предварительное выделение феррита и затем превращение аустенит —> перлит;

- предварительное выделение цементита и затем превращение аустенит —► перлит;

- превращение аустенит —► бейнит;

- превращение аустенит —► мартенсит и распад остаточного аустенита с образованием бейнита;

- превращение аустенит —► мартенсит:

- переохлаждённый аустенит сохраняется без превращения.

После рассмотрения процесса превращения аустенита при постоянной температуре и разных степенях переохлаждения можно перейти к рассмотрению процесса распада аустенита при непрерывном охлаждении, когда сталь, нагретая до аустенитного состояния, охлаждается с разной скоростью.

Диаграмма изотермического распада аустенита строится в координатах температура-время; в этих же координатах изображаются и кривые охлаждения.

Для более точной оценки превращений, совершающихся при непрерывно меняющейся температуре, пользуются так называемыми теркмокинетическими или анизотер.мическими диаграммами превращений аустенита, диаграммами, характеризующими превращение аустенита при различных скоростях охлаждения.

Хотя диаграммы изотермического превращения аустенита дают много сведений о характере превращений, на практике изотермичность превращения достигается далеко не всегда.

Для полной информации о превращении аустенита той или иной марки стали необходимы как диаграммы изотермического превращения аустенита, так и анизотермического превращения, а также ряд дополнительных сведений: марка стали, температура нагрева, размер зерна аустенита, а также свойства (хотя бы твёрдость') продуктов распада и соотношение структурных составляющих.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: