Легкие цветные металлы

Алюминий. В земной коре содержится примерно 8, 8 % алюминия, что в 1, 7 раза превышает содержание железа (5, 1 % [371]). Алюминий самый распространенный цветной металл как по содержанию в земной коре, так и по объему производства и масштабам применения.

Алюминий не претерпевает полиморфных превращений. Во всем температурном интервале вплоть до точки плавления он имеет кристаллическую решетку гранецентрированного куба (см. табл. 1. 2). Плотность алюминия в твердом и жидком состояниях уменьшается с повышением его чистоты и температуры. Плотность жидкого алюминия связана с температурой зависимостью [260]

у = 2,385 — 2,8•10 (Т — Тал), г/см3,

где величина 2,385 представляет собой плотность жидкого алюминия при Тпл (933 К).

 
 

Алюминий весьма пластичен, хорошо сваривается, легко поддается всем видам обработки давлением, а также резанию, хороший проводник тепла и электричества. Электрическая проводимость алюминия составляет 60 — 65% электрической проводимости меди. Поскольку алюминий примерно в три раза легче меди, алюминиевый провод с таким же электросопротивлением легче, чем медный. Примеси и легирующие элементы уменьшают электрическую проводимость алюминия (рис. 1. 1). Алюминий слабопарамагнитен. При Т= 1,2 К переходит в сверхпроводящее состояние [370].

Алюминий обладает специфическим свойством, определившим его применение в атомных реакторах, — способностью поглощать нейтроны. Известно, что чем ниже поперечное сечение поглощения тепловых нейтронов, измеряемое в барнах (16= 10-24 см2), тем выше поглощающая способность металла. Этот показатель у алюминия значительно ниже (0, 215 б), чем у других конструкционных металлов, таких, как железо (2, 43 б), медь (3, 59 б) и никель (4, 5 б) [384].

Во всех стойких соединениях алюминий проявляет степень окисления +3, однако при высоких температурах, главным образом в газообразных соединениях, он проявляет и другие степени окисления. При этом образуются так называемые субсоединения: А1О, АlO2, А12О и др.

Алюминий — химически активный металл. Даже при нормальной температуре на его поверхности образуется оксид А12О3. Наличие оксидной пленки на поверхности алюминия предохраняет его от дальнейшего взаимодействия с окружающей средой. Тугоплавкая оксидная пленка затрудняет процесс сварки алюминия. Литейные свойства алюминия невысоки из-за большой усадки малой жидкотекучести металла и высокой пористости получаемого литья.

Благодаря защитному действию оксидной пленки алюминий и его сплавы обладают высокой коррозионной стойкостью в атмосферных условиях и в тех средах, которые не разрушают пленку. Сероводород, сернистый газ и аммиак не влияют на коррозионную стойкость алюминия при комнатной температуре, а пар, дистиллированная и чистая пресная вода — и при высокой температуре. Алюминий обладает высокой коррозионной стойкостью в морской воде, которая, однако, понижается при его контакте с углеродистой и нержавеющей сталями. Это объясняется тем, что углеродистая сталь находится в III, а нержавеющая хромоникелевая сталь — в IV группе но значениям электродных потенциалов. Поскольку алюминий принадлежит ко II группе, происходит его более интенсивная контактная коррозия.

Алюминий достаточно устойчив в концентрированной азотной кислоте, в 100%-ной серной кислоте и в ее растворах концентрацией до 10 %. С повышением температуры раствора и концентрации кислоты коррозия резко возрастет. Сильнее действуют на алюминий соляная кислота, едкие щелочи (NaOH, КОИ), которые интенсивно растворяют алюминий с образованием алюминатов (NaA102, КАЮ2). В контакте с большинством металлов алюминий является анодом, поэтому коррозия его в электролитах ускоряется.

Алюминиевые сплавы делят на деформируемые и литейные, на термически неупрочняемые и термически упрочняемые.

К деформируемым относится и технический алюминий.

Технически чистый алюминий содержит ряд примесей. Допускаемое их количество в алюминии, выпускаемом промышленностью, приведено в табл. 1. 5. Помимо указанных алюминий технической чистоты содержит и ряд других неконтролируемых примесей (табл, 1.6) [173). Электросопротивление и механические свойства деформированного технического алюминия в значительной мере определяются чистотой металла (табл. 1.7). Наиболее распространенные марки и основные механические свойства листов из технически чистого алюминия приведены в табл. 1.8. Из него изготавливают также проволоку, прутки, профили и другие полуфабрикаты.

Холодная пластическая деформация заметно повышает прочность и снижает пластичность металла. Например, нагартовка листов технического алюминия повышает его предел прочности до 147—176 МПа. При этом относительное удлинение снижается до 1—2 % [173]. Упрочнение, достигнутое в результате нагартовки, сохраняется при нагревах до температур ниже температуры рекристаллизации (для алюминия марки А995 примерно 400 °С)

Большая склонность к росту зерна — отличительная особенность алюминия, которую необходимо учитывать при сварке и горячей обработке. Размер зерна в алюминии и его сплавах можно регулировать рекристаллизационным отжигом. Величина зерна после рекристаллизации зависит (как и у других металлов) от степени предшествующей пластической деформации (рис. 1. 2) и во многом определяет свойства алюминия после отжига [144]. Температуру рекристаллизационного отжига выбирают в интервале 300—500 °С при выдержке 0, 5—2 ч (144, 146]. Скорость охлаждения технического алюминия не влияет па конечную структуру металла, и ее можно выбирать произвольно. Обычно охлаждение полуфабрикатов производят на воздухе [146].

Относительно малый атомный радиус алюминия является причиной того, что алюминий образует с другими элементами ограниченные твердые растворы (цинк, магний, литий) и интерметаллиды (марганец, железо, медь и др.). Поэтому даже незначительное количество неизбежных примесей в алюминии — железа и кремния — существенно влияет на структуру и свойства металла. Наличие этих примесей способствует измельчению зерна в техническом алюминии и определяет уровень его механических свойств. Так, если предел прочности алюминия марки А999 составляет примерно 39, 7 МПа, то в алюминии марки А7 (Fe < 0, 16 %; Si < 0, 16 %) он достигает уже 68—78 МПа [144].

В результате нагартовки прочностные характеристики листов из технического алюминия возрастают до 130—145 МПа, однако при этом снижается пластичность. В сварных конструкциях полуфабрикаты из нагартованного алюминия обычно не применяются, поэтому при проектировании сварных конструкций следует ориентироваться на ненагартованный металл.

Мелкое зерно отожженного алюминия и его сплавов обеспечивает большую технологическую пластичность при обработке и улучшает свариваемость. Сплавы на основе алюминия обладают достаточно высокой удельной прочностью в сочетании с удовлетворительной пластичностью, что делает их весьма ценными конструкционными материалами.

Алюминиевые сплавы широко применяют в литом и деформированном состояниях. Из них изготавливают разнообразные конструкции авиационной и космической техники, их используют в транспортном и химическом машиностроении, в автомобильной и пищевой промышленности Непрерывно возрастает применение алюминия в строительстве.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: