Примеры дискретных распределений

1. Биноминальное. Пусть произведено n независимых испытаний. В каждом испытании наступает либо событие А, либо соответственно с вероятностями р, 1 –р. Рассмотрим случайную величину x - число появлений события А в последовательности испытаний.

Закон распределения этой случайной величины можно записать следующим образом

Р (x = m) = , m=0,1,2,…n. (4)

Действительно, рассмотрим выражение (p + q)n =1 , разложим двучлен (p + q)n по формуле бинома Ньютона. Получим

т.е. сумма вероятностей значений случайной величины равна единице, следовательно (4) является законом распределения.

Найдем математическое ожидание:

M (x) = ,

Рассмотрим случайные величины x1, x2, … xn, с одинаковым законом распределения:

xk =

где k = 1,2,…n. Тогда

x = x1 + x2 + … + xn.

Используя свойства математического ожидания получим:

М (x) = М (x1 + x2 + … + xn) = М (x1) + М (x2) +…+ М (xn).

Найдем математическое ожидание xk, М (xk) = 0 · (1 – p) + 1· p = р, тогда

М (x) = np

Аналогично найдем дисперсию:

D (x) = D (x1 + x2 + … + xn) = D (x1) + D (x2) +…+ D (xn)

D (xk) = (0 – p)2 (1 – p) + (1 – p)2 p = p2 (1 – p) + (1 – p)2 p =

= p (1 – p) (p + 1 – p) = p (1 – p) = p q

D (x) = n p q,

2. Распределение Пуассона.

Пусть произведено бесконечное число испытаний. Рассмотрим случайную величину x -число появлений события А.

m = 0, 1, 2,...

Закон распределения в данном случае имеет вид:

p (x =m) = , λ > 0 - параметр распределения, m = 0, 1, 2,... (5)

Покажем, что сумма вероятностей равна единице.

.

Аналогично можно показать, что математическое ожидание и дисперсия соответственно равны ,

М (x) = , D (x) = .

Закон Пуассона называют законом редких событий.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: