Понятие напора, приведённого давления, потенциала скорости течения, градиента давления

Для объективной оценки забойных давлений и возможности их сравнения вводится понятие приведенного давления. Измеренные или вычисленные забойные давления приводятся (пересчитываются) к условной горизонтальной плоскости, которой может быть принята любая плоскость в пределах залежи, абсолютная отметка которой известна.

Рис. 2.1. Схема наклонного пласта: 1- водонасыщенная часть пласта;

2 - первоначальный контакт; 3 - нефтенасыщенная часть; 4 - плоскость приведения

Обычно за плоскость приведения принимают плоскость, проходящую через первоначальный водонефтяной контакт, абсолютная отметка которого определяется при разведке месторождения. Если забои скважин сообщаются через проницаемый пласт, то в них устанавливаются одинаковые приведенные статические давления.

Приведенное давление (рис. 2.1) в скв. 1

а приведенное давление в скв. 2 будет

ρн - плотность нефти в пластовых условиях; g - ускорение силы тяжести;Δh1, Δh2 - разности гипсометрических отметок забоев скв. 1, 2 и плоскости приведения.

Если водонефтяной контакт поднялся на Δz, а плоскость приведения осталась прежней, то приведенные давления

для скв. 1 ,

для скв. 2 .

Здесь Δh1 и Δh2 - разность отметок забоев скважин и текущего положения водонефтяного контакта; ρв - плотность воды в пластовых условиях.

Кроме перечисленных давлений необходимо знать также давления на линии нагнетания и на линии отбора. Определение этих понятий будет дано в 3 главе при изложении методов поддержания пластового давления.

Потенциа́льное тече́ние — безвихревое движение жидкости или газа, при котором деформация и перемещение малого объёма жидкости происходит без вращения (вихря). При потенциальном течении скорость жидкости может быть представлена следующим образом:

v →=∇ ϕ (x, y, z)

где ϕ (x, y, z) — некоторая скалярная функция, называемая потенциалом скорости течения. Движение реальных жидкостей будет потенциальным в тех областях, где действие сил вязкости ничтожно мало по сравнению с действием сил давления и в которых нет завихрений, образовавшихся за счёт срыва со стенок пограничного слоя или за счёт неравномерного нагревания. Необходимым и достаточным условием потенциальности течения являются равенства:

vxy =∂ vyx,∂ vxz =∂ vzx,∂ vyz =∂ vzy

14 Зависимость параметров флюидов от давления. Функция Лейбензона
Влияние разности между давлением бурового раствора и давлением флюида в порах горных пород (Ар) на механическую скорость ин рассмотрено во многих работах.
Если давление в скважине рс меньше пластового рпл(давление флюидов, насыщающих пласт), то флюиды из пласта будут поступать в скважину, что называется проявлением. В зависимости от интенсивности проявления сопровождаются само-изливом жидкости (газа) на устье (переливы), выбросами, открытым (не контролируемым) фонтанированием. Эти явления осложняют процесс строительства скважины, а иногда создают угрозу пожаров, взрывов, отравлений. Помимо внешнего давления, на проницаемость оказывает значительное воздействие давление фильтрующего флюида (газа) Рф. Данные, приведенные в работе, показывают, что при повышении - Рф на 30 кгс / см2 при АРconst проницаемость гипсов увеличивается в 1 2 - 5 раз. Авторы объясняют это явление тем, что при повышении давления газа происходит как частичная разгрузка породы от внешнего давления и соответственно увеличение ее общего объема, так и сокращение объема твердой фазы за счет сжатия отдельных ее частиц под действием внешнего и внутреннего давлений.
Таким образом, для возникновения трещин, секущих слоистость, давление флюидов должно быть большим, чем для возникновения трещин по слоистости.
1.Помимо внешнего давления заметное влияние на проницаемость пород оказывает и давление фильтрующегося флюида (газа)
Функция Лейбензона
Основы теории движения газа в пористой среде были разработаны основателем советской школы нефтегазовой гидромеханики академиком Л.С.Лейбензоном. Он впервые получил дифференциальные уравнения неустановившейся фильтрации совершенного газа в пласте по закону Дарси.При выводе уравнения предполагалось, что коэффициенты пористости и проницаемости не изменяются с давлением, т.е. пласт недеформируем, вязкость газа также не зависит от давления, газ совершенный, а фильтрация газа в пласте происходит при неизменных во времени температурах газа и пласта (изотермический закон).
Для вывода дифференциального уравнения неустановившейся фильтрации совершенного газа воспользуемся уравнением, которое справедливо для любого сжимаемого флюида:
, (1)
где коэффициенты проницаемости и вязкости постоянны.
Функция Лейбензона для совершенного газа определяется по формуле:
Р = ρатp2⁄(2pат) + С. (2)
Продифференцируем (2) по координатам 2 раза:
, , (3)
Преобразуя правую часть уравнения (1) и считая пористость m0 постоянной и учитывая, что для совершенного газа
ρ = ρатp ⁄ pат, (4)
получим:
(5)
Подставив выражения (3) и (5) в уравнение (1), получим:
(6)
Где выражение в скобке представляет собой оператор Лапласа относительно р2, поэтому уравнение (6) принимает вид:

Полученное дифференциальное уравнение неустановившейся фильтрации совершенного газа называется уравнением Лейбензона и представляет собой нелинейное уравнение параболического типа. Оно справедливо для совершенного газа при выполнении закона Дарси. Так как коэффициент пористости входит в уравнение (1) в виде произведения ρm, в котором плотность газа меняется в большей степени, чем пористость, его изменением пренебрегают.
Уравнение Лейбензона (6) можно записать следующим образом, умножив правую и левую части на давление р и заменив

(8)
В такой записи под знаками производных по координатам и по времени находится одна и таже функция р2, но коэффициент в правой части kр/(ηm0) -переменный, в него входит искомая функция p(x,y,z,t).
Неустановившаяся фильтрация реального газа с уравнением состояния ρ = ρатp ⁄ [pатz(p)] и с учетом зависимости коэффициента вязкости от давления η=η(p) и недеформируемости пористой среды (m0=const, k=const) описывается следующим нелинейным дифференциальным уравнением параболического типа:

(9)
Для решения задач, связанных с неустановившейся фильтрацией газа, дифференциальное уравнение в форме (6) или (8) должно быть проинтегрировано по всей области газовой залежи при заданных начальных и граничных условиях.
Так как уравнение (6) или (8) представляет собой сложное нелинейное уравнение в частных производных, оно в большинстве случаев не имеет точных аналитических решений. Его можно проинтегрировать численно с помощью ЭВМ или решить приближенным способом. Приближенные способы хорошо разработаны.

. .

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: