Атомная и ядерная физика

59. Планетарная модель атома. Опыты, подтверждающие сложное строение атома.

60. Явление фотолюминесценции и ее применение. Квантовые генераторы.

61. Естественная радиоактивность. Способы наблюдения и регистрации заряженных частиц. Состав и масса атомного ядра. Изотопы.

62. Ядерные реакции. Энергетический выход ядерных реакций. 2 способа выделения энергии ядра: деление тяжелых и синтез легких ядер.

1) Молекулярно-кинетическая теория (МКТ) объясняет свойства макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Основные понятия молекулярно-кинетической теории:

Атом (от греческого atomos - неделимый) - наименьшая часть химического элемента, являющаяся носителем его свойств. Размеры атома порядка 10-10 м.

Молекула - наименьшая устойчивая частица данного вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Размеры молекул 10-10-10-7м.

Макроскопическое тело - тело, состоящее из очень большого числа частиц.

Виды М. в. Основу М. в. составляют кулоновские силы взаимод. между электронами и ядрами одной молекулы и ядрами и электронами другой. В экспериментально определяемых св-вах в-ва проявляется усредненное взаимод., к-рое зависит от расстояния Rмежду молекулами, их взаимной ориентации, строения и физ. характеристик (ди-польного момента, поляризуемости и др.). При больших R, значительно превосходящих линейные размеры l самих молекул, вследствие чего электронные оболочки молекул не перекрываются, силы М. в. можно достаточно обоснованно подразделить на три вида-электростатические, поляризационные (индукционные) и дисперсионные. Электростатич. силы иногда называют ориентационными, однако это неточно, поскольку взаимная ориентация молекул может обусловливаться также и поляризац. силами, если молекулы анизотропны.

2) Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

3) Значение числа Авогадро, рекомендованное CODATA в 2010 году [2]:

N A = 6,022 141 29(27)·1023 моль−1.

Основной характеристикой атомов и молекул служит относительная атомная масса элемента (сокращенно – атомная масса) и относительная молекулярная масса вещества (сокращенно – молекулярная масса). За единицу атомной массы выбрана часть массы атома углерода.

Атомной массой Аr химического элемента называется отношение массы атома этого элемента к массы атома углерода.

Молекулярной массой Mr вещества называется отношение массы молекулы этого вещества к массы атома углерода. Ясно, что атомная и молекулярная масса – величины безразмерные.

Как только что было определено, единица массы, равная массы атома углерода, называется атомной единицей массы. Обозначим эту единицу, выраженную в килограммах, через mед. Тогда масса атома, выраженная в килограммах, будет равна Аrmед, а масса молекулы – Mrmед.

Количество вещества, в котором содержится число молекул, равное числу атомов в 0,012 кг углерода С, называется молем.

Число молекул, содержащихся в одном моле, называется числом Авогадро. Экспериментально определено, что число Авогадро

.

4) Известно, что все тела состоят из молекул. Молекулы любого тела беспорядочно движутся и взаимодействуют друг с другом.

Из-за того, что молекулы беспорядочно движутся, они обладают кинетической энергией, а из-за того, что молекулы взаимодействуют друг с другом, они обладают потенциальной энергией.

Сумма кинетических энергий беспорядочного движения всех молекул тела и потенциальных энергий их взаимодействия друг с другом называется внутренней энергией тела.

^ Внутренняя энергия тела зависит от температуры и массы тела, от того, в каком агрегатном состоянии находится вещество и от некоторых других факторов.

Существует два способа изменения внутренней энергии тела: совершение работы и теплопередача.

При совершении работы внутренняя энергия меняется в двух случаях: при трении и при неупругой деформации.

При работе силы трения внутренняя энергия трущихся тел увеличивается за счёт уменьшения их механической энергии.

При неупругом сжатии тела его внутренняя энергия также увеличивается за счёт уменьшения механической энергии. При неупругом расширении тела его внутренняя энергия уменьшается и переходит в механическую энергию.

Теплопередача – процесс изменения внутренней энергии без совершения работы, при котором внутренняя энергия одного тела увеличивается за счёт уменьшения внутренней энергии другого тела.

Переход внутренней энергии при теплопередаче всегда происходит от тел с более высокой температурой к телам с более низкой температурой.

Первое начало термодинамики


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: