Спектральные закономерности линейчатых спектров атома водорода. Спектральные серии

В соответствии со вторым постулатом Бора при переходе электрона атома водорода из возбужденного состояния в состояние, соответствующее уровню n (n < m) атом водорода испускает квант электромагнитного излучения с частотой

, (4.16)

откуда

= =3,29·1015 с-1. (4.17)

С учетом того, что , от частоты можно перейти к длине волны .

. (4.18)

Здесь (4.19)

есть постоянная Ридберга, выраженная в .

Для перехода электрона в атоме водорода с n -го энергетического уровня (n -ой орбиты) на m -ый энергетический уровень (m -ую орбиту) при n<m атому необходимо сообщить энергию, равную разности энергий атома в конечном и начальном состояниях.

Таким образом, модель атома Н.Бора объясняет дискретный (линейчатый) характер спектра излучения атома водорода.

Опыт Франка и Герца. Существование дискретных энергетических уровней атомов подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц за экспериментальные исследования дискретности энергетических уровней в атомах получили Нобелевскую премию (1925 г.).

В опытах использовалась трубка (рис. 4.8), заполненная парами ртути

при давлении р ≈ 1 мм рт. ст. и три электрода: катод К, сетка С и анод А и измерять вольтметром V. Электроны ускорялись разностью потенциалов U между катодом и сеткой. Эту разность потенциалов можно было изменять с помощью потенциометра П. Между сеткой и анодом создавалось тормозящее поле 0,5 В (метод задерживающих потенциалов). Определялась зависимость тока через гальванометр Г от разности

Рис. 4.8 Рис.4.9

потенциалов U между катодом и сеткой.

В эксперименте была получена зависимость, изображенная на рис. 4.9. Здесь U = 4,86 В – соответствует первому потенциалу возбуждения.

Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя в одно из возбужденных состояний. Поэтому если в атомах действительно существуют стационарные состояния, то электроны, сталкиваясь с атомами ртути, должны терять энергию дискретно, определенными порциями, равными разности энергии соответствующих стационарных состояний атома.

Из опыта следует, что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно, его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при значениях, кратных значению 4,86 В ускоряющего потенциала, т.е. 2·4,86 В и 3·4,86 В. Ближайшим к основному, невозбужденному состоянию атома ртути является возбужденное состояние, отстоящее по шкале энергий на 4,86 В. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При e φ = 4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию, возбуждая переход одного из электронов атома из нормального состояния в возбужденное. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящий потенциал и достигнуть анода. Этим и объясняется резкое падение анодного тока при e φ = 4,86 эВ.

При значениях энергии, кратных 4,86 эВ, электроны могут испытывать с атомами ртути 2, 3, … неупругих соударения. При этом они полностью теряют свою энергию и не достигают анода, т.е. наблюдается резкое падение анодного тока. Таким образом, опыт показал, что электроны передают своюэнергию атомам ртути порциями, причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала проверку экспериментом.

Атомы ртути, получившие при соударении с электронами энергию Δ E, переходят в возбужденное состояние и должны вернуться в основное, излучая при этом, согласно второму постулату Бора, квант света с частотой ν = Δ E / h. По известному значению Δ E = 4,86 В можно вычислить длину волны светового кванта: λ = / Δ E ≈ 255 нм. Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с λ ≈ 255 нм, что действительно обнаружилось в опытах.

Таким образом, опыты Франка и Герца экспериментально подтвердили не только первый, но и второй постулат Бора и внесли большой вклад в развитие атомной физики.

Для водородоподобных ионов обобщенная сериальная формула Бальмера-Ридберга имеет вид:

. (4.20)

Используя постоянную Ридберга, получим выражение для энергии атома водорода:

, (4.21)

или . (4.22)

При n = 1 эта энергия равна работе ионизации атома водорода, т.е.

׀ e ׀ Ui, (4.23)

где , U i – потенциал ионизации, т.е. та наименьшая разность потенциалов, которую должен пройти электрон в электрическом поле, чтобы при столкновении с данным невозбужденным атомом ионизировать его. Работа по удалению электрона из атома равна работе сил электрического поля, ускоряющего электрон. Различают также потенциалы возбуждения атома. Например, первый потенциал возбуждения φ 1 – это ускоряющее напряжение, соответствующее переходу невозбужденного атома в первое возбужденное состояние. Учитывая квантовый характер поглощения энергии атомом, можно утверждать, что работа ионизации (или работа по возбуждению атома) равна энергии кванта , поглощенной атомом водорода при переходе электрона с первой боровской орбиты в бесконечность (или, например, на вторую орбиту).

Постоянная Ридберга (4.16) или (4.18) вычислена в предположении, что в атоме водорода электрон вращается вокруг «неподвижного» ядра, что возможно, строго говоря, при условии, когда масса ядра бесконечно велика в сравнении с массой электрона, поэтому эту постоянную часто снабжают индексом .

На самом же деле ядро и электрон вращаются вокруг их общего центра масс, что приводит к несколько иному значению для этой постоянной:

, (4.24)

где M – масса атомного ядра. Это обстоятельство учитывается на практике и при решении некоторых задач, где речь идет о сравнении спектров различных атомов. Например, благодаря чрезвычайной точности спектроскопических методов, появляется возможность экспериментально обнаружить различие в спектрах излучения изотопов водорода - атомов, отличающихся массами ядер. Практически, именно так, спектроскопическими методами был открыт изотоп тяжелого водорода - дейтерий D, для которого M D= 2 M H.

Теория Бора стала важным шагом в развитии физики атома. Она позволила объяснить механизм возникновения спектров и рассчитать частоты спектральных линий атома водорода и водородоподобных атомов (Нобелевская премия, 1922 год). Однако возникли принципиальные трудности при попытке использовать ее для объяснения спектральных закономерностей сложных атомов, содержащих более одного электрона, и молекул, а также для объяснения механизма образования молекул из атомов, т.е. при создании физической теории химических реакций. Кроме того, теория Бора является непоследовательной, поскольку введенное в нее Бором правило квантования момента импульса в принципе несовместимо с используемым классическим описанием поведения электрона. Сущность этого несоответствия выявилась лишь в 1924 году благодаря гипотезе де Бройля, которая позволила корпускулярно-волновой дуализм света распространить на микрочастицы.

Модель Бора не позволяет дать физическую интерпретацию правилу квантования. Это было сделано десятилетием позже де Бройлем на основе представлений о волновых свойствах частиц. Де Бройль предположил, что каждая орбита в атоме водорода соответствует волне, распространяющейся по окружности около ядра атома. Стационарная орбита возникает в том случае, когда волна непрерывно повторяет себя после каждого оборота вокруг ядра. Другими словами, стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты. Это явление очень похоже на стационарную картину стоячих волн в струне с закрепленными концами. В стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться по идее де Бройля целое число длин волн λ n, т.е. n=2π r n. В результате, боровское правило квантования оказалось связанным с волновыми свойствами электронов.

Наиболее важные для создания теории атомов сведения были получены из спектра излучения водорода. Спектр водорода оказался наиболее простым по сравнению со спектрами других элементов. В нем были обнаружены удивительно простые и в то же время выполняющиеся с очень большой точностью закономерности в расположении спектральных линий, так называемые спектральные серии (спектральные серии найдены были также и в спектрах других элементов, но формулы для их описания оказались более сложными, а совпадение этих формул с опытом значительно менее точным). Оказалось, что частоты всех линий, которые наблюдаются в спектре излучения водорода, определяются формулой:

. (4.2)

Это обобщенная формула Бальмера. Здесь ν – частота световой волны, – постоянная Ридберга ( =3,293 · 1015 c -1, n =1,2,3 …, m =2, 3, 4 …).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: