Билет № 28. 1. Электромагнитные волны и их свойства. Шкала электромагнитных волн

Волнами называют колебания, распространяющиеся в пространстве с течением времени. Волны переносят различные виды энергии из одной точки пространства в другую, однако, при этом не происходит перенос вещества. Так, волны расходятся от камня, брошенного в пруд, и представляют собой колебания уровня воды, расходящиеся от места падения концентрическими кругами. Звук тоже является волной – колебаниями давления воздуха, распространяющимися во все стороны от источника звука, например, свистка.

Колебательные перемещения электрического заряда тоже вызывают волны изменений электрического и магнитного полей. Действительно, эти колебания заряда сначала приведут к периодическим изменениям электрического поля вокруг, которые в свою очередь, согласно гипотезе Максвелла (см. §7), вызовут появление переменного магнитного поля той же частоты. При этом возникшее магнитное поле будет выходить за пределы породивших его колебаний электрического заряда. Потом, изменяющееся магнитное поле по закону электромагнитной индукции вызовет электрическое ещё на большем расстоянии от колеблющегося заряда и т.д. Таким образом, колебательные перемещения электрического заряда приводят к возникновению распространяющихся в пространстве волн колебаний электрического и магнитного полей. Такие волны называют электромагнитными.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом, который вывел систему уравнений, связывающую характеристики электромагнитного поля с его источниками - электрическими зарядами и токами. Из теории Максвелла следовало несколько важных выводов. Во-первых, электромагнитная волна является поперечной, так как вектор её вектор напряжённости электрического поля E и вектор магнитной индукции B перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 14). Во-вторых, электромагнитные волны распространяются в веществе с конечной скоростью, и это ещё раз подтвердило справедливость теории близкодействия. В-третьих, электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. При равномерном движении зарядов электромагнитное поле, как шлейф, только сопровождает их, однако, при ускорении часть этого поля отрывается от движущихся зарядов и существует в виде электромагнитных волн.

Периодические изменения Е и B, происходящие при распространении электромагнитной волны со скоростью с вдоль оси z, можно описать следующим образом, если считать, что в каждой точке пространства эти изменения со временем t являются гармоническими колебаниями постоянной амплитуды Е0 и B0, соответственно. Пусть изменения Еy и Bx в точке z = 0 происходят по формулам Еy = Е0sin(wt), а Bx=-B0sin(wt). Эти изменения Еy и Bx, передаваясь от слоя к слою, образуют электромагнитную волну, распространяющуюся вдоль оси z. В точке, находящейся на расстоянии z от начала координат, изменения Еy и Bx тоже будут гармоническими, отставая на время t, необходимое для прохождения волной расстояния z: t = z/c, где c – скорость распространения волны, равная в вакууме 3.108 м/с и называемая скоростью света. Поэтому изменения Еy и Bx в точке z можно получить из выражений:

Если одновременно измерить Еy и Bx в различных точках вдоль оси z и построить соответствующий график (см. рис.14), то он окажется синусоидой, и через расстояние, равное, значения Еy и Bx будут повторяться. Расстояние l между двумя ближайшими точками волны, колеблющимися в одинаковой фазе, называют длиной волны, которую также можно вычислить по формуле где Т – период электромагнитных колебаний.

1.Радиоволны

ν= 105-10 11 Гц; λ= 10-3 -103 м

Получают с помощью колебательных контуров и макроскопических вибраторов.

Свойства Радиоволны различных частот и с различными длинами волн по­тому поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Применение Радиосвязь, телевидение, радиолокация.

2. Инфракрасное излучение

ν = 3-1011 -4-1014 Гц; λ = 8 10-7 -2 10-7 м. Излучаются атомами и молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. человек излучает электромагнитные волны: λ= 9 -10 -6 м.

Свойства Проходит через некоторые непрозрачные тела, производит химическое действие на фотопластинки, поглощаясь веществом, нагревает его, вызывает внутренний фотоэффект у германия, невидимо, способно к явлениям интерференции и дифракции.

Регистрируется тепловыми методами, фотоэлектрическими и фотографическими.

I Применение Получают изображения предметов в теплоте, приборы ночного видения, системы самонаведения. Используют в криминалистике, физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

3.Видимое излучение

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

ν = 4-10 11 - 8 1014 Гц; λ = 8 10-7- 4 10 -7 м.

Свойства Отражается, преломляется, воздействует на глаза, способно к дисперсии, интерференции, дифракции.

4.Ультрафиолетовое излучение

ν = 8-10 11 – 3 10 15 Гц; λ= 10-8 - 4 10-7 м

(меньше, чем у фиолетового света).

Источники: газоразрядные машины с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000 °С, а так' же светящимися парами ртути.

Свойства Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменение в развитии клеток и обмене веществ, действует на глаза.

Применение В медицине, промышленности.

5.Рентгеновские лучи

Излучаются при большом ускорении электронов, например, при торможении в металлах.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозят. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной от 100 нм до 0,01 нм.

Свойства

Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь.

Применение

В медицине (диагностика заболеваний внутренних органон), промышленности (контроль за внутренней структурой различны изделий, сварных швов).

6. γ-излучение

ν= 3-1020Гц; λ = 3,3 10 -18 м.

Источники: ядерные реакции.

Свойства Имеет огромную проникающую способность, оказывает сильное биологическое воздействие.

Применение В медицине, промышленности (γ-дефектоскопия).

Вывод

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче прояв­ляются при малых частотах и менее ярко - при больших. И наобо­рот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

2. Колебательный контур и превращение энергии при электромагнитных колебаниях. Формула Томсона.

Электромагнитные колебания — это колебания электрического и магнитного полей, которые сопровождаются периодическим изменением заряда, силы тока и напряжения. Простейшей системой, где могут возникнуть и существовать свободные электромагнитные колебания, является колебательный контур. Колебательный контур — это цепь, состоящая из катушки индуктивности и конденсатора (рис. 29, а). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток (рис. 29, б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет иметь то же направление и перезарядит конденсатор (рис. 29, в). Процесс будет повторяться (рис. 29, г) по аналогии с колебаниями маятниками. Таким образом, в колебательном контуре будут происходить электромагнитные колебания из-за превращения энергии электрического поля конденсатора () в энергию магнитного поля катушки с током (), и наоборот. Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона . Частота с периодом связана обратно пропорциональной зависимостью .

В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии. Для получения незатухающих электромагнитных колебаний применяют индукционный генератор.

Согласно закону электромагнитной индукции, в нем возникает ЭДС с частотой 50 Гц, изменяющаяся по гармоническому закону .

Под действием ЭДС и идет переменный ток с частотой 50 Гц во всех лампочках, холодильниках и стиральных машинах в квартирах.

Переменный ток — это вынужденные электромагнитные колебания. Действительно, если ток изменится по гармоническому закону , то его магнитное поле также совершает гармоническое колебание с частотой . Причина тока — электрическое поле. Следовательно, с такой же частотой меняется электрическое поле в проводнике.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: