Схемы замещения двухобмоточных трансформаторов

Двухобмоточный трансформатор (рис.3.4, а) можно представить в виде Г-образной схемы замещения (рис.3.4, б).Продольная часть схемы замещения содержит Rт и Xт - активное и реактивное сопротивления трансформатора. Эти сопротивления равны сумме соответственно активных и реактивных сопротивлений первичной и приведенной к ней вторичной обмоток. В такой схеме замещения отсутствует трансформация, т.е. отсутствует идеальный трансформатор, но сопротивление вторичной обмотки приводится к первичной. При этом приведении сопротивление вторичной обмотки умножается на квадрат коэффициента трансформации. Если сети, связанные трансформатором, рассматриваются совместно, причем параметры сетей не приводятся к одному базисному напряжению, то в схеме замещения трансформатора учитывается идеальный трансформатор.

   
     
  Рис. 3.4. Двухобмоточный трансформатор: а - условное обозначение; б - Г-образная схема замещения; в - упрощенная схема замещения  

Поперечная ветвь схемы (ветвь намагничивания) состоит из активной и реактивной проводимостей Gт и Bт. Активная проводимость соответствует потерям активной мощности в стали трансформатора от тока намагничивания Im (рис.3.4, б).Реактивная проводимость определяется магнитным потоком взаимоиндукции в обмотках трансформатора.

В расчетах электрических сетей двухобмоточные трансформаторы при Uном£220 кВ представляют упрощенной схемой замещения (рис.3.4, в).В этой схеме вместо ветви намагничивания учитываются в виде дополнительной нагрузки потери мощности в стали трансформатора или потери холостого хода DPX-jDQX.

Для каждого трансформатора известны следующие параметры (каталожные данные): Sном - номинальная мощность, МВ . А;Uв.ном, Uн.ном - номинальные напряжения обмоток высшего и низшего напряжений, кВ; DРХ - активные потери холостого хода, кВт; Iх% - ток холостого хода, % Iном; DРК - потери короткого замыкания, кВт; uk% - напряжение короткого замыкания, % Uном. По этим данным можно определить все параметры схемы замещения трансформатора (сопротивления и проводимости), а также потери мощности в нем.

Проводимости ветви намагничивания определяются по результатам опыта холостого хода (XX). В этом опыте размыкается вторичная обмотка, а к первичной подводится номинальное напряжение. Ток в продольной части схемы замещения равен нулю, а к поперечной приложено Uном.Трансформатор потребляет в этом режиме только мощность, равную потерям холостого хода, т. е.

  S Х=DPХ-jDQХ. (3.12)

Потери реактивной мощности холостого хода в трансформаторе:

  . (3.13)

Активная проводимость трансформатора:

  . (3.14)

Реактивная проводимость трансформатора:

  . (3.15)

Сопротивления трансформатора Rт и Xтопределяются по результатам опыта короткого замыкания (КЗ). В этом опыте замыкается накоротко вторичная обмотка, а к первичной обмотке подводится такое напряжение, при котором в обеих обмотках трансформатора токи равны номинальному. Это напряжение и называется напряжением короткого замыкания uk %. Потери в стали в опыте короткого замыкания DPСТ.К очень малы, так как uk% намного меньше UНОМ. Поэтому приближенно считают, что все потери мощности DPК в опыте КЗ идут на нагрев обмоток трансформатора.

Активное сопротивление двухобмоточного трансформатора:

  . (3.16)

Реактивное сопротивление двухобмоточного трансформатора:

  . (3.17)

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: