Электростатическая система

Электростатическими называются приборы, вращающий момент которых создается в результате действия сил электрического поля, возникающих между разноименно заряженными проводниками – электродами измерительного механизма. Указанный способ создания вращающего момента принципиально отличает электростатические приборы от всех приборов непосредственной оценки, у которых вращающий момент возникает в результате взаимодействия магнитного поля измерительного механизма с током.

Электростатический измерительный механизм представляет собой конденсатор той или иной конструкции, емкость которого изменяется при перемещении его подвижной части, вызванном подключением к электродам прибора нагрузки, напряжение которой измеряется. Величина перемещения связана определенной зависимостью со значением напряжения. Электрическая емкость конденсатора, как известно, прямо пропорциональна абсолютной диэлектрической проницаемости диэлектрика, разделяющего электроды, и активной площади S электродов, т.е. площади нормальной проекции подвижного электрода на неподвижный, обратно пропорциональна расстоянию между электродами d. В зависимости от способа изменения емкости измерительные механизмы разделяются по конструкции на два вида.

На рис. 2.3.4, а представлен механизм, емкость которого изменяется под воздействием сил электрического поля в результате изменения d при практически неизменной активной площади S. Электроды 7 и 5 жестко прикреплены к деталям из изоляционного материала; они представляют собой неподвижную часть измерительного механизма. Электрод 6 прикреплен к планке 4 эластичными металлическими лентами; он является основной деталью подвижной части. При измерении постоянного напряжения U пластины 7 и 6 заряжаются одноименными по знаку зарядами, а пластина 5 – зарядами противоположного знака. Под действием сил электрического поля пластина 6 отталкивается от пластины 7 и притягивается к пластине 5. Перемещение пластины 6 вправо вызывает линейное перемещение прикрепленной к ней тяги 2, а, следовательно, и поворот оси 3 со стрелкой 1 на некоторый угол. Противодействующий момент у измерительных механизмов такой конструкции создается силой веса пластины 6 при отклонении ее от вертикального положения.

У измерительного механизма на рис. 2.3.4, б емкость изменяется вследствие изменения активной площади S при неизменной d. При подключении напряжения неподвижные пластины 8 и 9 заряжаются одноименными зарядами, а пластины 10 подвижной части – зарядами противоположного знака. Под действием сил электрического поля пластины 10 поворачиваются так, чтобы активная площадь увеличивалась, т.е. на рис. 2.3.4, б по часовой стрелке. Часто подвижная часть таких измерительных механизмов закрепляется на растяжках, а у более чувствительных приборов – на подвесе. Тогда указателем служит луч, отраженный от зеркала, закрепленного на растяжке или подвесе. противодействующий момент создается силами упругости спиральной пружины, растяжек или подвеса.

Определим вращающий момент М электростатического измерительного механизма в цепи постоянного тока на основании уравнения . Энергия измерительного механизма в данном случае есть энергия электрического поля конденсатора, образованного электродами этого механизма, т.е. , тогда . Так как противодействующий момент МПР = Wa (W – удельный противодействующий момент, зависящий только от свойств упругого элемента), то уравнение шкалы электростатического прибора в цепи постоянного тока . Из формулы ясно, что знак угла отклонения a не зависит от полярности измеряемого напряжения, следовательно, электростатические приборы пригодны для измерения в цепях переменного тока. В этом случае мгновенный вращающий момент , где u – мгновенное значение переменного напряжения. За период Т изменения напряжения подвижная часть ввиду ее инерционности не сможет существенно изменить своего положения и отклонение определяется средним значением вращающего момента: .

Но , где U – действующее значение измеряемого напряжения. Выражение вращающего момента соответствует формуле вращающего момента для постоянного тока, следовательно, уравнение шкалы такого механизма в цепи переменного тока тождественно при условии замены постоянного напряжения действующим значением измеряемого переменного напряжения.

Из выведенных уравнений очевидно, что на основе электростатического измерительного механизма может быть выполнен вольтметр, непосредственно измеряющий напряжение постоянного или переменного тока без предварительного преобразования этой величины. Из двух конструкций измерительного механизма более распространена конструкция, приведенная на рис. 2.3.4, б. Шкала электростатического вольтметра неравномерна, так как угол a пропорционален квадрату напряжения, однако она может быть существенно линеаризована. Это достигается выполнением электродов 3 (рис. 2.3.4, б) такой формы, чтобы множитель d С / d a в формуле угла поворота при увеличении a уменьшался. Электростатический вольтметр для создания вращающего момента не нуждается в потреблении тока от объекта измерения. Однако ввиду наличия емкости и некоторой проводимости изоляции измерительного механизма прибор в цепи переменного тока потребляет незначительный емкостный ток и крайне малый ток утечки изоляции (при измерении постоянного напряжения – только ток утечки). Входное сопротивление электростатических вольтметров очень велико – оно достигает 1010 Ом, а емкость мала – измеряется десятками пикофарад. Очень малое потребление тока из контролируемой цепи является одним из существенных преимуществ электростатических вольтметров. Другое преимущество – широкий частотный диапазон применения, измеряемый десятками мегагерц.

Недостатком электростатических измерительных механизмов являются малый (меньший, чем у всех рассмотренных механизмов) вращающий момент и, как следствие этого, малая чувствительность. Они нечувствительны к внешним магнитным полям, но чувствительны к электрическим. Для защиты от них измерительные механизмы помещают в электростатические экраны – замкнутые поверхности из электропроводящих металлов, например из фольги, или в металлические корпуса, которые обычно заземляют.

Температурные погрешности рассматриваемых приборов возникают ввиду зависимости упругих свойств пружин, растяжек или подвесов от температуры. Они не превышают 0,2 % диапазона измерения. Частотная погрешность электростатических приборов, а также погрешность, зависящая от формы кривой измеряемого напряжения, малы. Это позволяет использовать приборы в широком диапазоне частоты измеряемого сигнала, достигающем десятков мегагерц (в частности в радиотехнических целях) при точности измерения, соответствующей классам 0,5; 1,0; 1,5.

Выпускаются переносные и щитовые одно- и многопредельные электростатические приборы. Основная область применения переносных приборов – экспериментальные, исследовательские работы, требующие высокой точности измерения напряжения, тока, выполняемого как в мощных, так и в маломощных цепях в диапазоне напряжений от 10 В до 300 кВ с верхним пределом частоты до десятков мегагерц. Щитовые приборы применяют главным образом в стационарных электроэнергетических установках высокого напряжения, в частности постоянного тока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: