История изучения белков. Теория строения белков Мульдера. Пептидная теория строения белков

Первые попытки выделить белки были предприняты еще в 18 веке. К началу 19 века появляются первые работы по химическому изучению белков. Французские ученые Ж.Л. Гей-Люссак и Л.Ж. Тенар попытались установить элементный состав белков из разных источников, что положило начало систематическим аналитическим исследованиям, благодаря которым был сделан вывод о том, что все белки сходны по набору элементов, входящих в их состав. В 1836 голландский химик Г. Я. Мульдер предложил первую теорию строения белковых веществ, согласно которой все белки имеют некий гипотетический радикал (С40H62N10O12), связанный в различных пропорциях с атомами серы и фосфора. Он назвал этот радикал «протеином» (от греч. protein — первый, главный). Теория Мульдера способствовала увеличению интереса к изучению белков и совершенствованию методов белковой химии. Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме (гемоглобин, некоторые белки растений). Для анализа белков стали использовать их предварительное расщепление с помощью кислот и щелочей.

Одновременно все большее внимание стало уделяться изучению функции белков.Й. Я. Берцелиусв 1835 первым высказал предположение о том, что они играют роль биокатализаторов. Вскоре были открыты протеолитические ферменты—пепсин (Т. Шванн, 1836) и трипсин (Л. Корвизар, 1856), что привлекло внимание к физиологии пищеваренияи анализу продуктов, образующихся в ходе расщепления пищевых веществ. Дальнейшие исследования структуры белка, работы по химическому синтезу пептидов завершились появлением пептидной гипотезы, согласно которой все белки построены из аминокислот. К концу 19 века было изучено большинство аминокислот, входящих в состав белков. В начале 20 века немецкий химик Э. Г. Фишер впервые применил методы органической химии для изучения белков и доказал, что белки состоят из a-аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков, проведен рентгеноструктурный анализ аминокислот и пептидов, разработаны методы хроматографического анализа (см. Хроматография). Был выделен первый белковый гормон — инсулин (Ф. Г. Бантинг, Дж. Дж. Маклеод, 1922), доказано присутствие гамма -глобулиновв антителах, описана ферментативная функция мышечного белка миозина (В. А. Энгельгардт, М. Н. Любимова, 1939). Впервые в кристаллическом виде были получены ферменты — уреаза (Дж. Б. Салинер, 1926), пепсин (Дж. Х. Нортрон, 1929), лизоцим (Э. П. Абрахам, Р. Робинсон, 1937).

В 1950-х гг. была доказана трехуровневая организация белковых молекул — наличие у них первичной, вторичной и третичной структуры; создается автоматический анализатор аминокислот (С. Мур, У. Х. Стайн, 1950). В 60-х гг. предпринимаются попытки химического синтеза белков (инсулин, рибонуклеаза). Существенно усовершенствовались методы рентгеноструктурного анализа; был создан прибор — секвенатор (П. Эдман, Г. Бэгг, 1967), позволявший определять последовательность аминокислот в полипептидной цепи. Следствием этого явилось установление структуры нескольких сотен белков из самых разных источников. Среди них протеолитические ферменты (пепсин, трипсин,химотрипсин, субтилизин, карбоксипептидазы), миоглобины, гемоглобины,цитохромы, лизоцимы, иммуноглобулины, гистоны, нейротоксины, белки вирусных оболочек, белково-пептидные гормоны (см. Регуляторные пептиды). В результате появились предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и других областей биологической химии.

В конце 20 века значительные успехи были достигнуты в изучении роли белков в ходе матричного синтеза биополимеров, понимания механизмов их действия в различных процессах жизнедеятельности организмов, установления связи между их структурой и функцией. Огромное значение при этом имело совершенствование методов исследования, появление новых способов для разделения белков и пептидов. Разработка эффективного метода анализа последовательности расположения нуклеотидовв нуклеиновых кислотахпозволила значительно облегчить и ускорить определение аминокислотной последовательности в белках. Это оказалось возможным потому, что порядок расположения аминокислот в белке определяется последовательностью нуклеотидов в кодирующем этот белок гене (фрагменте ДНК). Следовательно, зная расстановку нуклеотидов в этом гене и генетический код, можно безошибочно предсказать, в каком порядке располагаются аминокислоты в полипептидной цепи белка. Наряду с успехами в структурном анализе белков значительные результаты были достигнуты в изучении их пространственной организации, механизмов образования и действия надмолекулярных комплексов, в том числе рибосоми других клеточных органелл, хроматина, вирусов и т. д.

Немецкий химик Эмиль Фишер, уже прославившийся на весь мир исследованиями пуриновых соединений (алкалоидов группы кофеина) и расшифровкой структуры сахаров, создал пептидную теорию, во многом подтвердившуюся практически и получившую всеобщее признание еще при его жизни, за что он был удостоен второй в истории химии Нобелевской премии (первую получил Я.Г. Вант-Гофф).

Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:

Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной. Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Идея о полимерном характере строения белков как известно высказывалась еще Данилевским и Хертом, но они считали, что "мономеры" представляют собой очень сложные образования - пептоны или "углеазотные комплексы".

Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).

Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям:
1) Качественное и количественное определение продуктов полного гидролиза белков.
2) Установление строения этих конечных продуктов.
3) Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.
4) Сравнение полученных таким образом соединений с природными белками.

Из этого плана видно, что Фишер применил впервые новый методологический подход - синтез модельных соединений, как способ доказательства по аналогии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: