Нейтральные жиры

К нейтральным жирам относится группа липидов, состоящих из трехатом­ного спирта — глицерина и трех остатков жирных кислот, поэтому они на­зываются триглицеридами.

В состав нейтральных жиров могут входить одинаковые жирные кислоты, например пальмитиновая. В таком случае образуется сложный эфир - триглицерид, трипальмитин. Это простые жиры. Если жиры содержат остатки разных жирных кислот, то образуются смешанные жиры.

В данном уравнении реакции показаны обратимые процессы синтеза (верхняя стрелка) и гидролиза (нижняя) жира.

Природные жиры отличаются большим разнообразием входящих в их состав жирных кислот, их различным расположением в молекуле и степенью ненасыщенности. Потенциально могут существовать миллионы изомеров триглицеридов.

Жирные кислоты — органические кислоты с длинной углеводородной цепью (радикалом R), содержащей от 4 до 24 и более атомов углерода, и одной карбоксильной группой. Общая формула жирных кислот имеет вид

СnН2n + 1СООН, или R-COOH.

Для многих жирных кислот характерно наличие четного числа атомов углерода, что обусловлено, по-видимому, их синтезом путем прибавления двууглеродных звеньев к растущей углеводородной цепи.

В состав жиров организма человека чаще всего входят жирные кислоты с 16 или 18 атомами углерода, которые называются высшими жирны­ми кислотами. Высшие жирные кислоты разделяются на насыщенные предельные) и ненасыщенные (непредельные)

Насыщенные кислоты Ненасыщенные кислоты
С3Н7СООН Масляная (бутановая) С17Н33СООН Олеиновая
С11Н23СООН Лауриновая С17Н31СООН Линолевая
С15Н31СООН Пальмитиновая С17Н29СООН Линоленовая
С17Н35СООН Стеариновая С19Р31СООН Арахидоновая

В насыщенных жирных кислотах все свободные связи углеродных атомов заполнены водородом. Такие жирные кислоты не имеют двойных или тройных связей в углеродной цепи. Ненасыщенные жирные кислоты имеют в углеродной цепи двойные связи (-С=С-), первая из которых возникает между девятым и десятым атомами углерода от карбоксильной группы. Жирные кислоты с тройными связями встречаются редко. Жирные кислоты, содержащие две и более двойных связей, называются полинена­сыщенными.

С увеличением числа углеродных атомов в молекулах жирных кислот температура их плавления увеличивается. Жирные кислоты могут быть твердыми веществами (например, стеариновая) либо жидкими (например, линолевая, арахидоновая); они не растворимы в воде и весьма слабо рас­творимы в спирте.

Твердые жиры — это жиры животного происхождения, за исключением рыбьего жира. Жидкие жиры — это растительные масла, за исключением кокосового и пальмового масел, которые затвердевают при охлаждении. В организме животных и у растений ненасыщенных жирных кислот в два раза больше, чем насыщенных.

Ненасыщенные жирные кислоты более реакционноспособны, чем на­сыщенные. Они легко присоединяют два атома водорода по месту двойных связей, превращаясь в насыщенные:

Этот процесс называется гидрогенизацией. Вещества, подвергнутые гидрогенизации, изменяют свои свойства. Например, растительные масла превращаются в твердый жир. Реакция гидрогенизации широко использу­ется для получения твердого пищевого жира — маргарина из жидких рас­тительных масел.

Особое значение для человека имеют полиненасыщенные жирные кислоты. В организме они не синтезируются. При их недостатке или отсутствии в пи­ще нарушается обмен жиров, в частности холестерина, наблюдаются па­тологические изменения в печени, коже, функции тромбоцитов. Поэтому такие ненасыщенные жирные кислоты, как линоленовая и линолевая, — незаменимые факторы питания.

Кроме того, они способствуют выходу из печени жиров, которые синтезируются в ней, и предупреждают ее ожи­рение. Такое действие ненасыщенных жирных кислот называется липотропным эффектом. Ненасыщенные жирные кислоты служат предшествен­никами синтеза биологически активных веществ — простагландинов. Су­точная потребность человека в полиненасыщенных кислотах в норме сос­тавляет примерно 15 г.

Нейтральные жиры накапливаются в жировых клетках (адипоцитах), под кожей, в молочных железах, жировых капсулах вокруг внутренних органов брюшной полости; незначительное их количество находится в скелетных мышцах. Образование и накопление нейтральных жиров в жировых тканях называется депонированием. Триглицериды составляют основу резервных жиров, которые являются энергетическим запасом организма и используются при голодании, недостаточном употреблении жиров, длительных физических нагрузках.

Нейтральные жиры входят также в состав клеточных мембран, сложных белков протоплазмы и называются протоплазматическими. Протоплазматические жиры не используются в качестве энергетического источника даже при истощении организма, так как выполняют структурную функцию. Их количество и химический состав постоянны и не зависят от состава пищи, тогда как состав резервных жиров постоянно изменяется. У человека протоплазматические жиры составляют около 25 % всей массы жира в организме (2-3 кг).

В различных клетках организма, особенно в жировой ткани, постоянно протекают ферментативные реакции биосинтеза и распада нейтральных жиров:

При гидролизе жиров в организме образуются глицерин и свобод­ные жирные кислоты. Этот процесс катализируется ферментами липаза­ми. Процесс гидролиза жиров в тканях организма называется липолизом. Скорость липолиза значительно увеличивается при физических нагрузках на выносливость, а активность липаз повышается в процессе тренировки.

Если реакцию распада жира проводить в присутствии щелочей (NaOH, КОН), то образуются натриевые или калиевые соли жирных кислот, кото­рые называются мылами, а сама реакция — омылением. Эта химическая реакция лежит в основе производства мыла из различ­ных жиров и их смесей.

Фосфолипиды

Фосфолипиды — это жироподобные вещества, состоящие из спирта (чаще глицерина), двух остатков жирных кислот, остатка фосфорной кислоты и азотсодержащего вещества (аминоспирта — холина или коламина).

Если в молекулы фосфолипида входит холин, они называются лецитины, а если коламин – кефалины.

Холин Коламин

Альфа-лецитин Альфа-кефалин

Строение бета-изомеров отличается тем, что остатки фосфорной кислоты и аминоспирта расположены у второго (среднего) углеродного атома глицерина.

Фосфатиды, особенно лецитин в большом количестве содержатся в желтке яиц. В организме человека они широко распространены в нервной ткани. Фосфолипиды играют важную биологическую роль, являясь структур­ным компонентом всех клеточных мембран, поставщиками холина, необ­ходимого для образования нейропередатчика — ацетилхолина. От фосфолипидов зависят такие свойства мембран, как проницаемость, рецепторная функция, каталитическая активность мембраносвязанных ферментов.

Фосфолипиды доминируют в мембранах животной клетки, они содержатся также во многих ее субклеточных частицах.

Биологическая роль фосфолипидов в организме значительна и разнообразна. В качестве непременного компонента биологических мембран фофолипиды принимают участие в их барьерной, транс­портной, рецепторной функциях, в разделении внутреннего прост­ранства клетки на клеточные органеллы — «цистерны», отсеки. Эти функции мембран относят в настоящее время к важнейшим регуляторным механизмам жизнедеятельности клеток. Присутствие фосфолипидов в мембранах необходимо и для функционирования мембранносвязанных ферментных систем.

СТЕРОИДЫ

Стероиды относятся к неомыляемым липидам. По химической природе стероиды - производные циклопентанпергидрофенантрена. Их разделяют на стерины и стериды. Стерины — высокомолеку­лярные циклические спирты, имеющие в составе молекулы ядро циклопентанпергидрофенантрена.

 
 

 

В состав различных тканей входят также стериды — сложные эфиры, образованные стеринами и жирными кислотами. Стерины и их производные выполняют разнообразные функции в орга­низме. Большое биологическое значение в животном организме имеет холестерин. Нарушение его обмена может повлечь патологические изменения сосудов — атеросклероз. Холестерин служит биологиче­ским предшественником желчных кислот, стероидных гормонов. Желчные кислоты имеют большое значение в процессе расщепле­ния липидов в кишечнике. Стероидные гормоны регулируют мно­гочисленные процессы обмена веществ.

БЕЛКИ

Наиболее важными соединениями каждого организма являются белки. Они обязательно обнаруживаются во всех клетках организма, в большинстве из них на долю белка приходится более поло­вины сухого остатка. Все основные проявления жизни связаны с белками. «Жизнь, — писал Ф. Энгельс, — есть способ существования белковых тел... Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и проявления жизни».

Белки - высокомолекулярные азотосодержащие органические соединения, состоящие из остатков аминокислот. В составе неко­торых белков наряду с аминокислотами обнаруживают и другие соединения.

Для живых организмов характерно большое разнообразие белков, которые составляют основу структуры организма и обеспечи­вают множество его функций. Полагают, что в природе существу­ет примерно 1010-1012 различных белков, что и объясняет большое многообразие живых организмов. В одноклеточных орга­низмах насчитывают около 3000 различных белков, а в организме человека — около 5000000.

Несмотря на сложность строения и многообразие, все белки построены из сравнительно простых структурных элементов — аминокислот. Белки представляют собой полимерные молекулы, в состав которых входит 20 различных аминокислот. Изменение числа аминокислотных остатков и последовательности их распо­ложения в молекуле белка обеспечивает возможность образова­ния громадного количества белков, отличающихся своими физико-химическими свойствами, структурной или функциональной ролью в организме.

Для любого организма белки играют решающую роль во всех процессах жизнедеятельности. С ними связа­ны такие свойства живого организма, как раздражи­мость, сократимость, пищеварение, способность к росту, размножению, движению. Следовательно, бел­ки являются главными носителями жизни. В неживой природе соединения, подобные белкам, не встреча­ются.

Химический состав и биологическая роль белков

Белки — высокомолекулярные азотсодержащие ве­щества, при гидролизе которых образуются амино­кислоты. Иногда белки называют протеинами (от греч. proteus — первый, главный), определяя тем са­мым их важнейшую роль в жизнедеятельности всех организмов. Белок в организме человека составляет в среднем 45 % сухой массы тела (12-14 кг). Содержа­ние его в отдельных тканях различное. Наибольшее количество белка содержится в мышцах, костях, коже, пищеварительном тракте и других плот­ных тканях.

Суточная потребность в белке взрослого челове­ка, не занимающегося спортом, составляет в среднем 1,3 г на 1 кг массы тела или около 80 г. При больших энерготратах потребность в них увеличивается при­мерно на 10 г на каждые 2100 кДж увеличивающихся затрат энергии.

Белки поступают в организм преимущественно с пищей животного происхождения. В растениях бел­ков содержится значительно меньше: в овощах и фруктах — всего 0,3-2,0 % массы свежей ткани; наи­большее количество белков — в бобовых — 20-30 %, злаках — 10-13 и грибах — 3-6 %.

Элементарный состав белков. Важнейшими хи­мическими элементами всех белков являются углерод (50-55 %), кислород (21-23 %), водород (6,5-7,3%), азот (15-18%), сера (0,3-2,5%). В составе белков обнаружены также фосфор, железо, йод, медь, марганец и другие химические элементы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: