Коммуникация и речевая активность 14 страница



Особой популярностью при моделировании мышления длительное время пользовались достаточно однотипные задачи на перемещения: анаграммы, задача переливания жидкости, задачи перевозки ревнивых мужей и их жен, миссионеров и каннибалов, проблема монстров и т.д. На рис. 8.3 показан вариант одной из наиболее известных из числа та­ких задач, получившей название «Ханойская башня». Задача состоит в том, чтобы переместить фишки с левого на правый стержень. При этом каждый раз можно брать только одну фишку, а класть ее можно только на фишку больших размеров. При оптимальной стратегии эта задача ре­шается за 2" — 1 шагов, где л — число фишек. Детальный психологичес­кий анализ решения этой задачи проводился в последние десятилетия многими авторами, причем иногда ее используют и в целях нейропсихо-логической диагностики (в несколько упрощенных вариантах, извест­ных как «Лондонская башня» и «Торонтская башня»).

Возможности машинных программ также часто проверяются на за­дачах этого типа. Г. Саймон и Дж. Хайес (Simon & Hayes, 1976) проана­лизировали для тестирования своей программы протоколы контрольной группы — людей, процесс решения задачи которыми прослеживался с по­мощью классической методики рассуждения вслух Дункера. Проведен­ный анализ показал, что испытуемые беспокоились о правильном пони­мании условий, часто просили дать им дополнительные разъяснения и


проверяли допустимость тех или иных возможных шагов31. Надо сказать, что именно эти моменты в работе программы представлены не были. Эквивалентность результатов, очевидно, еще не означает совпадения процессов. В целом ориентированный на формальное моделирование подход привел к успехам главным образом в случае тех задач, где относи­тельно однозначно определены условия, а решение может быть достиг­нуто с помощью выполнения последовательных операций над дискрет­ными символами.

Было бы большой ошибкой, конечно, недооценивать потенциал символьного подхода. Все более быстрый алгоритмический перебор ва­риантов — основа эффективности компьютерных систем, позволившая им в последнее время более чем успешно соревноваться с человеком даже в таких традиционных областях интеллектуальных достижений, как шахматы (см. 8.3.3). Человек должен решать задачи иначе, опираясь на эвристические методы. Не случайно отклонение от механического перебора считается одним из критериев действительно разумного реше­ния. В популярной истории математики хорошо известен рассказ о юном Гауссе, нашедшем новое решение некоторой сравнительно лег­кой, но чрезвычайно скучной задачи. Согласно этой истории (или ле­генде), учитель, чтобы освободить себе какое-то время, дал школьникам задачу найти сумму всех чисел от 1 до 100. К его удивлению, уже через пару минут один из мальчиков — это был Карл Гаусс — сообщил, что за­дача решена. В отличие от прямого решения 1 + 2 + 3 и т.д. он выбрал непрямой путь, начав суммирование одновременно с двух концов ряда:

(1 + 100) + (2 + 99) + (3 + 98)... = 101 χ 50 = 505032.

Определенные способности к манипуляции пространственными структурами, поиску решения «в обход», а не «в лоб», предполагаются множеством так называемых малых мыслительных задач, широко приме­няемых в психологии для иллюстрации закономерностей мышления. Рассмотрим следующую задачу, требующую известного переосмысления стратегии решения (задача упоминается в книге А.Р. Лурия 1979 года, посвященной мнемонисту Ш.). Пусть в университетской библиотеке на полке рядом стоят два тома руководства по когнитивной науке. Каждый

31 Подобные исследования справедливо критикуются за опору на рассуждение вслух.
Согласно распространенной точке зрения, самоотчеты отражают лишь гипотезы, кото­
рые конструирует субъект, пытаясь дать причинно-следственное объяснение своего по­
ведения (см. 4.4,3). Параллельный анализ самоотчетов и движений глаз испытуемых сви­
детельствует о том, что лишь часть активности, связанной с процессами решения задач,
находит отражение в вербальных отчетах. Серьезная проблема состоит также в интерфе­
ренции рассуждения вслух с процессами самого решения (см. 1.1.3).

32 Наглядная интерпретация этой же задачи состоит в ее представливании как выклады­
вания поверхности, состоящей из увеличивающихся на единицу рядов квадратов. Такая
поверхность будет иметь форму прямоугольного треугольника. Удвоив число квадратов,
можно увидеть, что искомое решение эквивалентно нахождению половины площади пря­
моугольника со сторонами ЮОи 101. Общее аналитическое решения для подобного приме­
ра арифметической прогрессии, конечно же, выглядит следующим образом: 0,5п ■ (п + 1). 231


том имеет объем 400 страниц. Червяк начинает работать с этим матери­алом и успевает за какое-то время продвинуться от первой страницы первого тома до последней страницы второго. Спрашивается, сколько всего страниц прогрыз червяк? Напрашивающийся сразу же ответ «800 страниц» ошибочен. Для решения нужно постараться наглядно предста­вить, как именно будут стоять оба тома на полке при их правильной ориентации. Очевидно, первая страница первого тома и последняя вто­рого будут разделены при этом только обложками. Следовательно, чер­вяк прогрызет всего лишь две страницы.

В чем специфическая трудность этой задачи? Только в том, что, ус­лышав в условиях данные о количестве страниц в сочетании с вопросом «сколько?», мы ошибочно интерпретируем эту задачу как математичес­кую. На рис. 8.4 приведены две задачи «графическо-математического» типа, решение которых мы предоставляем читателю. Эта пара задач по­зволяет проиллюстрировать феномен функциональной фиксированности, который использовался гештальтпсихологами для критики взглядов представителей вюрцбургской школы (см. 1.3.1). Дело в том, что задачи несколько отличаются принципом их решения. При этом внешне они очень похожи, поэтому возникает впечатление, что во втором случае можно просто применить старое решение, или, иначе говоря, использо­вать опирающуюся на функции памяти метапроцедуру ВОСПРОИЗВЕ­ДЕНИЕ, тогда как необходимыми являются ПОНИМАНИЕ и ВАРЬИ­РОВАНИЕ с одновременным подавлением (метапроцедура КОНТРОЛЬ) тенденции к повторению. В результате «фиксированности» на ошибоч­ном подходе испытуемые тратят на решение второй задачи больше вре­мени, чем на решение первой.

Рис. 8.4. Два ошибочных уравнения выложены из спичек римскими цифрами. Как ис-232 править каждое из уравнений путем перестановки только одной спички?

Большинство рассмотренных в этой главе задач решается легче, когда они даны на конкретном материале, что свидетельствует о роли процессов пространственного воображения. Для современных «эволю­ционистов» (см. 8.2.3) и сторонников концепции «телесной заземлен-ности» семантики (см. 7.4.2) это ожидаемый результат, объясняемый первичностью манипулятивной активности с предметами. Вместе с тем имеются и другие задачи, которые требуют абстрактно-символьного ОПИСАНИЯ условий. Опора на стратегию наглядного ПРЕДСТАВЛИ-ВАНИЯ может вести при этом к выраженным ошибкам.


Хорошим примером служит предложенная английским психоло­гом Ричардом Грегори задача на определение толщины сложенного 50 раз пополам листа папиросной бумаги. Большинство испытуемых пы­тается наглядно представить процесс последовательного складывания очень тонкого и очень широкого листа. В этом случае они обычно на­зывают величину порядка одного-двух метров. На самом деле в резуль­тате этой процедуры, по сути дела представляющей собой возведение двойки (с некоторым коэффициентом, равным толщине листа) в 50-ю степень, должна была бы получиться величина, сопоставимая с рассто­янием от Земли до Солнца! В другой задаче того же общего типа испы­туемым предлагается представить себе тонкий шнур, плотно опоясыва­ющий Землю по экватору, а затем добавить к нему метровый отрезок. Необходимо определить примерную величину зазора между шнуром и земной поверхностью, возникающего в результате ослабления натяже­ния шнура. Читатель может самостоятельно найти решение этой за­дачи. Заметим только, что решение ведет к игнорированию размеров опоясываемого объекта: оно является тем же самым в случае Земли и теннисного мяча.

Рассмотрим еще одну задачу, известную как задача про безумного орла. Пусть в одно и то же время из города А и города Б, расположен­ных на расстоянии 100 км друг от друга, навстречу друг другу отправля­ются два поезда. Скорость каждого из них равна 50 км/час. В момент начала движения с паровоза одного из поездов взлетает орел, который летит навстречу другому поезду со скоростью 100 км/час. Долетев до второго поезда, орел немедленно поворачивает назад и летит к первому поезду, от которого немедленно летит к другому и т.д. Спрашивается, сколько всего километров пролетит орел до момента встречи поездов? В подобной формулировке задача навязывает яркий зрительный образ летающего вперед и назад орла. Знающего математику человека это за­ставляет строить алгебраические уравнения, учитывающие постоянное сокращение расстояния между поездами. Задача решается тогда путем суммирования ряда чисел, соответствующих расстояниям, которые на каждом этапе пролетает орел. Правильное, то есть в данном случае про­стое решения состоит в... игнорировании траектории полетов орла. В са­мом деле, двигаясь с относительной скоростью 100 км/час (50 + 50) по­езда должны пройти 100 км. Следовательно, встреча произойдет через 1 час после начала движения. За это время орел пролетит точно 100 км.

Попробуем подвести некоторые предварительные итоги анализа решения задач. Уже в классической немецкой психологии мышление стало описываться как преобразование проблемной ситуации. Вюрцбур-жцы подчеркивали при этом целенаправленность и абстрактный харак­тер мыслительных операций, гештальтисты — спонтанность трансфор­маций, неожиданно ведущих к усмотрению решения, инсайту (см. 1.3.1). По сравнению с этими направлениями когнитивные исследования,



во-первых, позволили описать эвристики, используемые в процессах решения (см. 8.1.1 и 8.4.1), и, во-вторых, добавили представление о множественном выборе: выборе формата репрезентации условий и вы­боре метаопераций, используемых для трансформации этих условий. Для успешности решения, следовательно, большое значение имеет со­ответствие представления условий тем метапроцедурам, которые ис­пользуются для достижения решения.

Еще один существенный результат исследований последних лет со­стоит в выявлении коммуникативной природы мышления и, соответствен­но, многих возникающих при решении задач затруднений. В особеннос­ти малые мыслительные задачи, примеры которых были приведены на предыдущих страницах, специально сконструированы так, чтобы вво­дить читателя/слушателя в заблуждение, навязывая своими формули­ровками неоптимальные репрезентации и/или средства их трансформа­ции. В этом отношении использующие их психологи прямо нарушают один из грайсовских принципов коммуникативной прагматики, кото­рый предписывает говорящему быть релевантным (так называемая мак­сима отношения — см. 7.4.1). Что касается испытуемых, то они значи­тельно усложняют себе путь к решению, заранее ожидая поддержки со стороны экспериментатора и стараясь быть кооперативными: «Если экспериментатор сообщает мне все эти сведения, я должен обязатель­но попытаться использовать их в моем решении задачи».

Таким образом, мышление как решение задач — это прежде всего искусство выбора и отбора: выбора общего формата репрезентации ус­ловий и соответствующих метапроцедур, а также отсеивания (с крою­щейся за ним метапроцедурой КОНТРОЛЬ) подчас очень заметных, но иррелевантных с точки зрения разрешения проблемы деталей. Подоб­ное отсеивание иррелевантных и даже намеренно вводящих в заблуж­дение деталей делает возможной более полную концентрацию на су­щественных для решения моментах. Судя по всему, эти процессы по их значимости выходят далеко за рамки собственно психологических исследований малых мыслительных задач, представляя собой одну из основ значительно более сложных интеллектуальных достижений, на­пример, открытий Коперника или Галилея. Ведь эти открытия проти­воречили не только общепринятому «академическому знанию», но и непосредственно наблюдаемым «физическим фактам», таким как види­мое движение Солнца относительно неподвижного горизонта и, несом­ненно, более высокая скорость падения тяжелых тел по сравнению с легкими.



8.3.2 Сложные проблемы, творчество и открытие

Для повседневных ситуаций, в которых человек должен продемонстри­ровать свою разумность и интеллектуальные способности, характерно то, что они частично знакомы субъекту и могут быть отнесены к опреде­ленной семантической области. Далее, они не разбиты на дискретные, не связанные друг с другом «задачи», имеющие однозначные ответы. Нам самим приходится выделять проблемы, ставить и корректировать цели, находить средства их достижения, контролировать развитие событий — в особенности последствия собственных действий и поступков, так как в реальных условиях решение одной проблемы почти всегда порождает несколько новых. Поскольку ситуация обладает собственной динами­кой, контроль должен вестись с опережением событий, в режиме анти­ципации: правильное решение в момент времени t, перестает быть тако­вым в некоторый последующий момент t2. Наконец, в реальной жизни почти не бывает чисто когнитивных проблем: их постановка и процес­сы решения переплетаются с интересами и ресурсами других людей, социальных групп и общества в целом33. Иными словами, мир предста­ет перед мыслящим и действующим человеком как сложная открытая система.

Примеров изучения проблемных ситуаций подобного уровня слож­ности в когнитивной психологии до последнего времени было очень мало. Особенно интересным направлением стал анализ процессов ре­шения сложных практических задач в реальном или моделируемом ком­пьютером окружении. Дональд Бродбент (Broadbent, 1977), который и в этом отношении оказался первооткрывателем, провел самые ранние эк­сперименты с анализом особенностей когнитивных процессов испыту­емых, пытавшихся управлять работой сложной, включавшей множество переменных компьютерной моделью экономики Великобритании.

Наиболее полными исследованиями такого рода являются полу­чившие широкую известность работы немецкого психолога Дитриха Дёрнера (Doerner, 1986). В одной из них испытуемые должны были в те­чение «десяти лет» управлять небольшой административно-хозяйствен­ной единицей — вымышленным городком «Лохаузен» и окружающей его территорией. Коммуна «Лохаузен» была смоделирована с помощью компьютерной программы как сеть из примерно 2000 взаимодействую­щих экономических, экологических, демографических и политических переменных. Испытуемые могли вызвать любую исходную информа­цию о состоянии системы, должны были самостоятельно оценивать ее и предпринимать адекватные действия, направленные на процветание

33 Исключением являются, конечно, задачи с математическими объектами. Одна их них связана с нахождением так называемых «чисел-близнецов» — пар простых чисел, разделенных всего лишь одной позицией, таких как 3 и 5, 5 и 7, 11 и 13, 17 и 19, 29 и 31... Возникает впечатление, что такие пары будут встречаться на оси натуральных чисел вновь и вновь, но в общем виде это предположение, кажется, до сих пор остается недоказанным. 235


«Лохаузена» и увеличение благополучия его жителей. Компьютер моде­лировал последствия этих действий и по мере необходимости выдавал испытуемому информацию, на основании которой нужно было осуще­ствлять новые управляющие воздействия. В отсутствие всяких управля­ющих воздействий система обнаруживала легкую тенденцию к неста­бильности и последующему распаду.

В этой работе (и в многочисленных последующих, которые часто имеют сегодня характер компьютерных игр с эколого-экономическим содержанием) были выявлены выраженные индивидуальные различия между испытуемыми. Так, уже в исследованиях Дёрнера одни из них очень быстро доводили подвластную им территорию до экономической и социальной катастрофы, тогда как другие оставляли «Лохаузен» пос­ле «десятилетнего правления» процветающим городом с решенной жи­лищной проблемой, трудоустроенной молодежью и т.д. При этом — к большому удивлению самого инициатора этих экспериментов — корре­ляция успешности управления подобными сложными системами с ре­зультатами традиционных психодиагностических тестов интеллекта, типа тестов Векслера и Гилфорда (см. 8.1.1), оказалась близкой к нулю. Что же тогда существенно для решения подобных задач?

Анализ индивидуальных данных свидетельствует о том, что причи­ны различий кроются в организации знаний и использовании разных метакогнитивных стратегий. Те, кто легко добивается успеха, значитель­но более активны в попытках понять взаимодействие переменных систе­мы (метапроцедура ПОНИМАНИЕ). Они далее имеют в своем распоря­жении большое число знаний среднего уровня абстрактности. Эти так называемые «умеренно абстрактные схемы» (их роль подчеркивается многими исследователями — см. 8.3.3) позволяют относительно легко переходить от обобщенного рассмотрения проблемы, способствующего обнаружению сходства с другими областям знания (метапроцедура АНАЛОГИЯ), к планированию и реализации действий. Испытуемые, решающие подобных задач с отрицательным балансом, напротив, опи­раются либо на очень специфичные, конкретные единицы памяти, либо остаются на уровне общих деклараций и благих намерений34.

34 Вопрос, конечно, в том, насколько удачно использование столь сложных ситуаций в качестве инструмента оценки индивидуальных различий. Любая система, состоящая из тысяч переменных, обладает собственной динамикой. Если на некотором этапе автоном­ное развитие системы начинает протекать в неблагоприятном направлении, то никакие, даже очень разумные вмешательства не исправят положения. Именно поэтому так труд­но оценить интеллект политических деятелей, когда в оценку неизбежно вмешиваются внешние факторы, такие как географические открытия, колебания климата или цены на нефть. Точно так же постановка научных проблем может просто опережать свое время, обрекая усилия исследователей на неудачу. Так, попытки Д.И. Менделеева понять при­чины обнаруженной им периодической зависимости, свойств химических элементов от атомного веса не могли быть успешными уже потому, что они примерно на 80 лет опере-236 дили развитие методов и концептуального аппарата физической химии.


Решение реальных жизненных задач обнаруживает также выра­женную зависимость от использования метапроцедуры ПРЕДСТАВЛИ-ВАНИЕ. Подобная зависимость от наглядно-действенных средств реп­резентации и преобразования проблемной ситуации противоречит ожиданиям, основанным на компьютерной метафоре. Уже на примере понимания отдельных предложений и отрывков текста мы видели, что оно не может быть сведено к манипулированию символами (см. 7.3.1). Существует большое число свидетельств значения наглядно-действен­ного мышления в научной деятельности. Научная оценка этих свиде­тельств должна осуществляться с учетом того, что сами возможности нашего воображения относительно тесно связаны с имеющимися кон­цептуальными структурами (см. 8.1.1).

Примером служит замечание польского физика Леопольда Инфель-да: «Фарадей и Бор обладали богатым воображением и были наделены гениальной прозорливостью. Фарадей видел силовые линии электричес­ких и магнитных полей, тогда как для остальных там существовала пус­тота, свободная от физических проблем. Достаточно один раз слышать Бора, видеть движения его рук, образы и модели, которые он воспроиз­водит, чтобы понять, что Бор действительно видит, как построен атом, что он мыслит образами, непрерывно возникающими перед его глазами» (цит. по: Швырев, 1978, с. 38). Опора на зрительные представления со­всем неудивительна в этих случаях, поскольку и Фарадею и Бору удалось создать чрезвычайно успешные наглядные модели изучаемых объектов. Так, Фарадей, использовав рассыпанные на листе бумаги металлические опилки, смог выявить характерный узор силовых линий, возникающих у одного полюса магнита и исчезающих у другого. 20 годами позже, бли­же к концу 19-го века Джеймс Клерк Максвелл увидел сходство этого рисунка с распределением струй протекающей в сужающемся канале жидкости, создав на основе данной АНАЛОГИИ с гидродинамикой ма­тематическую теорию электромагнитных явлений. Бор также воспользо­вался АНАЛОГИЕЙ, на этот раз между строением атома и Солнечной системой. Его планетарная модель атома предполагала существование ядра и переменного количества электронов-планет, вращающихся вок­руг ядра на определенных орбитах.

В популярной истории науки особенно подчеркивается роль снови­дений и/или игры воображения при открытии Ф.А. Кекуле в 1865 году кольцевого строения молекулы бензола и при создании (четырьмя года­ми позже) Периодической системы элементов Д.И. Менделеевым. Инте­ресный обзор данных о роли зрительных образов в творчестве выдающих­ся физиков, химиков, математиков, инженеров, физиологов, биологов, скульпторов и композиторов 20-го века был написан Роджером Шепар-дом (Shepard, 1978a). Проведенный этим автором анализ говорит о воз­можной роли процессов мысленного ВРАЩЕНИЯ в создании Ф. Криком и Дж. Уотсоном в 1953 году модели двойной спирали ДНК. Исследование Шепарда значительно дополняет тот фактический материал, который со­бран в известных работах Ж. Адамара и М. Вертхаймера. Явным пробе­лом в ней является только отсутствие упоминания роли воображения в 237



литературном творчестве (см. 8.1.3). Достаточно вспомнить, с какой точ­ностью воссоздана Ф.М. Достоевским и М.А. Булгаковым топография Петербурга, Киева и Москвы — реальная пространственная сцена опи­санных в их романах вымышленных и фантастических событий.

И все же наметившийся акцент на роли образного мышления в науч­ных открытиях требует коррекции. Так, знаменитому «химическому па­сьянсу» и последующему сну Д.И. Менделеева (они датируются второй половиной дня 17 февраля 1869 года) предшествовало десятилетие, в те­чение которого он пытался найти основания для классификации при­мерно 60 известных тогда химических элементов, по его собственному замечанию, «перепортив массу бумаги». Менделеев сравнительно рано пришел к выводу, что в основу систематики должны быть положены атомные веса, а не один из множества других, обсуждавшихся в то вре­мя параметров. Вторым приближением стало понимание того, что зави­симость свойств элементов от атомного веса периодически меняется — наблюдается «как бы период свойств». Наконец, последнее крупное пре­пятствие на пути к Периодической системе было взято, когда Менделе­ев заметил, что сами «группы периодичности» обнаруживают сходство «через одну», что нашло свое выражение в различиях заполнения четных и нечетных строк таблицы элементов. Как отмечает современный иссле­дователь: «Менделееву предстояло не просто в один прекрасный день удачно разложить "химический пасьянс" да вовремя увидеть нужный сон..., но проделать... работу по осмыслению громадной, разноречивой и не всегда точной информации и концептуального аппарата химии» (Дмитриев, 2001, с. 37).

Итак, всякое открытие представляет собой прежде всего процесс кон­цептуального изменения (см. 6.3.1). В психологии подобную точку зрения раньше других авторов сформулировал Макс Вертхаймер (Вертгеймер, 1987), подчеркнувший, что открцтие — это не механически достигнутый новый результат, а более глубокое понимание ситуации, меняющее зна­чение составляющих ее компонентов. К этой точки зрения он пришел на основании реконструкции открытий Галилея и Эйнштейна, причем уни­кальность его исследования состоит в том, что с последним, коллегой по физическому факультету Берлинского университета (см. 1.3.1), Вертхай­мер мог вести длительные доверительные беседы.

По Вертхаймеру, центральной для Галилея была работа с понятием ускорения. Упростив измерение скорости падения рассмотрением дви­жения шара по наклонной плоскости, Галилей установил, что ускорение постепенно и симметрично (в случаях отрицательного ускорения при движении шара вверх и положительного при движении шара вниз) уменьшается по абсолютной величине с уменьшением наклона поверхно­сти. Иными словами, если представить ускорение как непрерывную функцию от угла наклона, то при нулевом наклоне ускорение должно быть равным нулю, из чего и следует гениальный «закон инерции» — всякое тело сохраняет сообщенную ему скорость при движении в гори­зонтальной плоскости (см. 6.4.3). Это открытие позволило снять основ­ное возражение против теории Коперника. Предположим, что Земля действительно вращается вокруг своей оси относительно неподвижного Солнца, причем с очень большой скоростью, позволяющей ей совер-


шить полный оборот за 24 часа. Тогда упавший с башни камень должен приземлиться не у ее основания, а на некотором расстоянии от него, ведь за время падения башня успеет сдвинутся вместе с Землей. Опыты (для них идеально подходила Пизанская башня) показали, что никакого отклонения места падения не происходит, казалось бы, опровергая ге­лиоцентрическую теорию. Закон инерции объясняет этот результат тем, что падающий камень одновременно продолжает по инерции двигаться вместе с башней.

Исходным пунктом создания теории относительности стал мыслен­ный эксперимент, который Эйнштейн провел в возрасте 16 лет, предста­вив себя движущимся вместе с пучком света с леденящей воображение скоростью 300 000 км/с35. При этом он натолкнулся на трудности описа­ния наблюдаемых «в полете» объектов и событий в терминах сначала световых, а затем — спустя несколько лет, после знакомства с теорией Максвелла, — и электромагнитных колебаний. В теории Максвелла ско­рость света фигурирует в качестве константы, независимой от выбора системы отсчета. Поэтому Эйнштейн (как и крупнейший французский математик Анри Пуанкаре) не стал считать артефактами озадачившие современников результаты экспериментов, авторы которых не нашли изменения скорости света в зависимости от направления движения Зем­ли—к удаленному астрономическому источнику света или от него. Эйн­штейн усомнился сначала в относительности скорости света (правило сложения скоростей галилеевско-ньютоновской механики), а затем и в абсолютности времени. Специальная теория относительности зафикси­ровала новое понимание пространства, движения и времени, причем понятие времени впервые получило здесь операциональную трактовку, связанную с процедурами измерения одновременности.

Карл Дункер назвал мышление «борьбой, в которой куется ее соб­ственное оружие». Эта метафора напоминает описание образного мыш­ления Данте, данное О.Э. Мандельштамом (как серия порождаемых са­молетом на лету «технически немыслимых», новых летательных аппаратов — см. 8.1.3). В обоих случаях речь идет о том, что менталь­ные пространства, организующие процесс решения всякой достаточно сложной задачи, создаются по ходу самого решения. Эти сравнения, однако, не должны быть поняты как указание на исключительно внут­ренний характер активности, порождающей решения «из глубины соб­ственного духа». Последнее было бы неверно, учитывая существование восприятий, фактов, мнений и фрагментов концептуального знания, между которыми объективно возникают или латентно сохраняются про­тиворечия. Мышление состоит в обнаружении и преодолении противоре­чий: противоречия формы и содержания в художественном творчестве,

35 Хотя такого рода динамическое СОВМЕЩЕНИЕ себя с потоком света крайне не­
обычно с точки зрения обыденного сознания (то есть координации уровня Е), оно впол­
не может спонтанно встречаться и встречается в художественном воображении (см. 8.1.3),
например, в поэтической моделе мира Мандельштама — ср. «О, как же я хочу, не чуемый
никем, лететь вослед лучу, где нет меня совсем...». 239


конфликта различных способов описания (ре-репрезентации) объекта исследования в фундаментальной науке, наконец, так называемого «технического противоречия» в случае прикладных разработок и изоб­ретательского творчества (Альтшулер, 1973). Именно поэтому мышле­ние лучше описывается в терминах диалектического развития (см. 1.4.1), чем посредством правил традиционной формальной логики.

Для прояснения деталей ментального экспериментирования, которое приводит к решению проблем, необходимо принять во внимание суще­ствование нескольких глобальных метапроцедур, упоминавшихся в пер­вом разделе этой главы (см. 8.1.3). Важнейшими являются РЕКУРСИЯ и ВАРЬИРОВАНИЕ. Первая делает возможным многократное вложение ментальных пространств друг в друга. Ряд особенностей мышления че­ловека можно интерпретировать как результат использования именно этой метапроцедуры. Мы имеем в виду прежде всего психологическое структурирование задачи, выделение в ее составе иерархии целей, отме­чаемое многими исследователями36. Во-вторых, это происходящее по ходу подобного структурирования «погружение в задачу», связанное с выходом из сферы актуального осознания не только первоначального намерения («зачем?»), но также и требуемого общего решения. Третьей характерной особенностью является повторное осознание исходных на­мерений по мере снятия соответствующих противоречий, что, видимо, объясняется уменьшением числа вложенных друг в друга ментальных пространств. Такая актуализация исходных смысловых контекстов, про­исходящая в результате преодоления промежуточных препятствий, дела­ет понятным, почему в личностном отношении сложным может оказать­ся период после достижения конечной цели — известно, что «время после победы опасно для победителя».


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: