Вывод. Поле, созданное бесконечной равномерно заряженной плоскостью, однородно. Оно не меняется с расстоянием от заряженной поверхности ни по величине, ни по направлению

Теперь рассмотрим еще один важный пример. Пусть поле создаётся двумя бесконечными плоскостями, заряженными разноименно, но с одинаковой по величине поверхностной плотностью заряда (рис. 2.9.). Это важная идеализация электростатики — плоский конденсатор. Каждая обкладка этого конденсатора создаёт однородное поле. Силовые линии поля положительно заряженной плоскости направлены от неё, а отрицательной — к плоскости. При сложении этих полей, напряжённость результирующего поля вне конденсатора оказывается равной нулю, а внутри конденсатора, где эти поля совпадают по направлению, — поле удваивается.

8) При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 4.4.1):

 

Потенциальная энергия заряда q, помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A10, которую совершит электрическое поле при перемещении заряда q из точки (1) в точку (0):

 
Wp1 = A10.
 

(В электростатике энергию принято обозначать буквой W, так как буквой E обозначают напряженность поля.)Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.Работа, совершаемая электрическим полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

 
A12 = A10 + A02 = A10 – A20 = Wp1 – Wp2.
 

Потенциальная энергия заряда q, помещенного в электрическое поле, пропорциональна величине этого заряда. Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

 
 

Потенциал φ является энергетической характеристикой электростатического поля. Работа A12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

  A12 = Wp1 – Wp2 = qφ1 – qφ2 = q(φ1 – φ2).  

В Международной системе единиц (СИ) единицей потенциала является вольт (В). 1 В = 1 Дж / 1 Кл.

Потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

 
   

9) Связь с потенциалами Связь напряженности электрического поля с потенциалами в общем случае такова:

где - скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции: В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до: Это выражение для связи электростатического поля с электростатическим потенциалом. При решении задач на расчет электрического поля, т.е. на нахождения либо потенциала, либо напряженности, можно столкнуться с тем обстоятельством, в одной задаче проще найти напряженность, но сложнее рассчитать потенциал и наоборот. Поэтому, определившись, какую величину проще найти, другую величину можно найти, пользуясь хорошо известными выражениями: - пусть мы нашли потенциал в данной точке φ=φx, то напряженность определится по формуле Ex=-∂φ∂x. Составляющая вектора напряженности электрического поля в данной точке по любому направлению равна производной от потенциала по этому направлению в той же точке, взятой с отрицательным знаком. - разность потенциалов можно найти, используя найденное значение напряженности поля как функции координат φ1-φ2=12Edl=12Exdx.

10) Вещество или материальное тело, в котором имеются заряды, способные переносить электрический ток, называется проводником. В металлах переносчиками тока служат свободные (т.е. не привязанные к атомам) электроны, в электролитах — ионы, в плазме — и электроны, и ионы. Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества. Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют проводники и диэлектрики. Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы. В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды (рис. 4.5.1). Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами. Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника ). Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника. Электрическое поле внутри проводников с избыточными зарядами. Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов. При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

11) Ёмкость Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой: , где —относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), — электрическая постоянная, численно равная 8,854187817·10−12 Ф/м. Эта формула справедлива, лишь когда d много меньше линейных размеров пластин.Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

или

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна

или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения. Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов. Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

Плоский конд.

Ёмкость

Электрическое поле

Схема

Последовательное и параллельное соединение конденсаторов. При последовательном соединении n Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Параллельное соединение n конденсаторов образует систему. общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.Обозначим суммарную емкость соединенных в батарею конденсаторов бук­вой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:
Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов. При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

12) Энергия заряженного проводника

Как известно, заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна. Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δ q, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем

(6.7)

Так как емкость проводника C = q /φ, то выражение (6.7) может быть также представлено, как

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает Частное U / d равно напряженности поля в зазоре; произведение S · d представляет собой объем V, занимаемый полем. Следовательно, Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна C учетом соотношения можно записать В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину dri, составляет Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно, . Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика . Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:  

 

 

 

   

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: