Основные показатели работы хим. реактора

.

6.3 Классификация химических реакторов и режимов их работы. Классификация реакторов: по гидродинамической обстановке. Реакторы смешения — это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения — трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока и ее флуктуациями, а также завихрениями. Для идеального смешения характерно абсолютно полное выравнивание всех характеризующих реакцию параметров по объему реактора. по условиям теплообмена. Реактор называется изотермическим, если за счет теплообмена с окружающей средой в нем обеспечивается постоянство температуры. В этом случае в любой точке реактора за счет теплообмена полностью компенсируется выделение или поглощение теплоты. В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется за счет теплообмена с окружающей средой, а частично вызывает изменение температуры реакционной смеси. Особо следует выделить авто термические реакторы, в которых поддержание необходимой температуры процесса осуществляется только за счет теплоты химического процесса без использования внешних источников энергии. по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газ фазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ – твердое вещество, жидкость - твердое вещество и др. по способу организации процесса. По способу подвода реагентов и отвода продуктов реакторы подразделяют на периодические, непрерывно действующие и полу периодические В периодическом реакторе все стадии протекают последовательно, в разное время. В проточном реакторе все стадии процесса химического превращения вещества осуществляются одновременно. Время пребывания отдельных частиц потока в непрерывно действующем реакторе - случайная величина. Реактор полу периодического действия характеризуется тем, что один из реагентов поступает в него непрерывно, а другой — периодически. по характеру изменения параметров процесса во времени. Реакторы могут работать в стационарном и нестационарном режимах. Рассмотрим некоторую точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов в любой момент времени. Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону режим работы реактора называют нестационарным. по конструктивным характеристикам. По этому принципу можно выделить такие типы реакторов: емкостные реакторы; колонные реакторы; реакторы типа теплообменника; реакторы типа реакционной печи

 

6.4 Реакторы периодического и непрерывного действия. Для реакторов периодического действия характерно падение движущей силы процесса во времени вследствие уменьшения концентрации реагентов в ходе процесса. Это приводит к тому, что режим работы реакторов периодического действия не стационарен во времени и требует изменения параметров процесса для компенсации этого падения и поддержания скорости процесса на заданном уровне. Для реакторов непрерывного действия характерно постоянство движущей силы процесса во времени вследствие постоянства концентраций реагентов в ходе процесса. Поэтому режим работы реакторов непрерывного действия стационарен во времени и не требует корректировки параметров процесса. Реакторы непрерывного действия. Химические реакторы непрерывного действия по режиму движения компонентов делятся на реакторы идеального вытеснения (РИВ-Н), реакторы идеального смешения (РИС - Н) и реакторы промежуточного типа (РПТ-Н).

6.5 Адиабатический, изотермический и автотермический режимы работы хим.реактора. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора. Разность температур Т является движущей силой теплообмена. При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен - на нагрев или охлаждение реакционной смеси. Реактор называется изотермическим, если за счет теплообмена с окружающей средой в нем обеспечивается постоянство температуры. В этом случае в любой точке реактора за счет теплообмена полностью компенсируется выделение или поглощение теплоты. В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется за счет теплообмена с окружающей средой, а частично вызывает изменение температуры реакционной смеси. Особо следует выделить автотермические реакторы, в которых поддержание необходимой температуры процесса осуществляется только за счет теплоты химического процесса без использования внешних источников энергии. Обычно стремятся к тому, чтобы химические реакторы, особенно применяемые в крупнотоннажных производствах, были авто термическими.

6.6 Периодический реактор идеального смешения (РИС-П) В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят после окончания процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.Между отдельными реакционными циклами в периодическом реакторе необходимо осуществить вспомогательные операции — загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.Режим идеального смешения характеризуется следующими допущениями:- мгновенное изменение и выравнивание технологических параметров по объему реактора;- равенство значений технологических параметров на выходе и в объеме реактора.Таким образом, процесс, протекающий в периодическом реакторе, является нестационарным.В периодическом реакторе идеального смешения в соответствии с допущениями идеальности значения концентрации реагентов, степени превращения, температуры, скорости реакции и других параметров в любой момент времени будут одинаковы во всех точках реактора, однако значения тех же параметров для одной и той же точки в разные моменты времени будут отличаться. Однако периодические реакторы обычно можно приспособить к широкому диапазону условий реакций, что удобно при необходимости производить на одной установке различные химические продукты, например, в промышленности химических реактивов. Периодические реакторы смешения часто применяют в микробиологической промышленности для культивирования аэробных микроорганизмов.

6.7 Непрерывный (проточный) реактор идеального смешения (РИС-Н). Если необходимо обеспечить получение большого количества продукта одинакового качества, химический процесс предпочитают проводить в непрерывно действующих реакторах с установившимся режимом. Распространенным видом таких проточных аппаратов являются реакторы смешения. Проточный реактор смешения может работать как в нестационарном режиме (пуск, выход на режим, остановка), так и в стационарном, установившемся режиме.В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества осуществляются параллельно, одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических производствах, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывно действующих реакторах. Время пребывания отдельных частиц потока в непрерывно действующем реакторе, в общем случае, — случайная величина. Так как от времени, в течение которого происходит реакция, зависит глубина химического превращения, то она будет разной для частиц с разным временем пребывания в реакторе. Средняя глубина превращения определяется видом функции распределения времени пребывания отдельных частиц, зависящим, в свою очередь, от характера перемешивания, структуры потоков в аппарате для каждого гидродинамического типа реактора индивидуальным.

6.8 Реактор идеального вытеснения. Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Каждый элемент потока, условно выделенный двумя плоскостями, перпендикулярными оси канала, движется через него как твердый поршень, вытесняя предыдущие элементы потока и не перемешиваясь ни с предыдущими, ни с со следующими за ним элементами. Идеальное вытеснение возможно при выполнении след.допущений: 1. Движущийся поток имеет плоский профиль линейных скоростей; 2. Отсутствует обусловленный любыми причинами перемешивание в направлении оси потока; 3. В каждом отдельно взятом сечении, перпендикулярным оси потока, параметры процесса (концентрации, температуры и т.д.) полностью выровнены. Максимально приблизиться к идеальному вытеснению можно лишь в развитом турбулентном режиме и если при этом длина канала существенно превышает его поперечный размер. В соответствии со вторым и третьим допущением диффузионный перенос в реакторе идеального вытеснения отсутствует. Следовательно, уравнение для РИВ в нестационарном режиме работы примет вид:При стационарном режиме уравнение будет еще более простым:

7.1 Уравнение материального баланса химического реактора в общем виде. Уравнения материального баланса (одно или несколько) составляют по тому или иному компоненту — участнику реакции (реагенту или продукту), отражая в уравнении все изменения, происходящие с этим компонентом. Если реакция, протекающая в химическом реакторе, простая, то обычно составляют одно уравнение материального баланса по любому реагенту или продукту. Если реакция сложная, математическое описание, как правило, включает несколько уравнений материального баланса по нескольким веществам, каждое из которых участвует по меньшей мере в одной ил простых реакций, составляющих сложную. Уравнение материального баланса по веществу J учитывает все виды поступления и расходования этого компонента в пределах элементарного объема ∆V в течение промежутка времени ∆Т:nJ,вх – nJ,вых – nJ,х.р. = nJ,накгде nJ,вх — количество вещества J, внесенное в элементарный объем ∆V за время ∆Т с потоком участников реакции; nJ,вых - количество вещества J, вынесенное из объема ∆V за время ∆Т с потоком участников реакции; nJ,х.р — количество вещества J, израсходованное на химическую реакцию (или образовавшееся в результате ее протекания) в объеме ∆V за время ∆Т; nJ,нак - накопление вещества J в объеме ∆V за время ∆Т (изменение количества вещества J, одновременна содержащегося в объеме ∆V).

7.2 Конвекционный и диффузионный перенос массы в химическом реакторе. Конвективный перенос, или перенос импульса, вызван движением потока со скоростью u в результате какого-либо внешнего воздействия. При макроскопическом движении жидкости каждый данный ее участок передвигается как целое с неизменным составом, и в результате осуществляется чисто механическое перемешивание: хотя состав каждого передвигающегося участка жидкости может оставаться неизменным (если нет химической реакции), в каждой неподвижной точке пространства (неподвижном элементарном объеме) концентрация жидкости будет со временем меняться. Охарактеризовать конвекционный перенос можно изменением импульса единицы объема жидкости СJ uДиффузионный перенос вызван наличием неравномерного распределения вещества J в пространстве. Вследствие выравнивания концентрации путем молекулярного переноса веществ реакционной смеси из одного участка жидкости в другой так же происходит изменение состава внутри элементарного объема. Охарактеризовать диффузионный перенос можно в соответствии с законами Фика изменением диффузионного потока вещества J, равного DgradСJ (D- коэффици-ент диффузии).

7.3 Материальный баланс РИС-П, РИС-Н и РИВ в стационарном режиме. Материальный баланс РИС-П в стационарном режиме

Реактор идеального вычисления представляет собой длинный канал,через который реакционная смесь движется в поршневом режиме. Материальный баланс РИВ в стационарном режиме

7.4 Тепловая устойчивость хим. реакторов в случае экзо- и эндо- термических реакций. При анализе совместного решения уравнений материального и теплового балансов адиабатическою реактора идеального смешения для экзотермических реакций было отмечено, что возможны случаи, когда система имеет не одно, а несколько решении. Таким образом, наличие нескольких решений означает возможность множественности стационарных состояний. На практике, конечно, из трех возможных решений будет реализовано одно. Желательно, чтобы работа реактора характеризовалась высокой степенью превращения исходного реагента. Стационарное состояние системы называется устойчивым, если небольшие кратковременные возмущающие воздействия не могут вывести систему за пределы небольшой области, окружающей исследуемый стационарный режим. Если систему, находящуюся в устойчивом состоянии, отклонить от него, а затем предоставить ее самой себе, то она самопроизвольно вернется в начальное состояние. Отклонение системы, находящейся в неустойчивом состоянии, вызовет после снятия возмущения ее самопроизвольный переход в другое, устойчивое состояние. При выборе условий проведения экзотермической реакции обычно стремятся обеспечить единственное устойчивое стационарное состояние с высокой степенью превращения. Для этого можно увеличить или начальную температуру Т0 или среднее время пребывания в реакторе. Такие решения иногда невыгодны экономически.

7.5 Оптимальный тепловой режим хим. реактора. Температурный (тепловой) режим проведения химического процесса, обеспечивающий экономически целесообразную максимальную производительность единицы объема реактора (интенсивность) по целевому продукту, называют оптимальным.Подход к разработке оптимального температурного режима может быть различным в зависимости от типа химической реакции. Очевидно, что максимальная интенсивность реактора будет достигнута при проведении процесса с максимально возможной скоростью.

7.6 Некоторые способы обеспечения тепловой устойчивости и оптимального теплового режима хим. реактора. Решение практической задачи проведения процесса в промышленном реакторе в соответствии с оптимальным температурным режимом зависит от многих факторов и прежде всего от теплового эффекта и кинетики реакции. Для эндотермических (обратимых и необратимых) реакций целесообразно химический процесс проводить в реакторах с подводом теплоты, причем желательно обеспечить достаточна равномерное распределение температуры по объему реактора. Распространенным типом аппаратов для проведения эндотермических реакций являются трубчатые реакторы, похожие по своей конструкции на кожухотрубные теплообменники.

8. Вода в хим промышленности.Водоподготовка.Жесткость и умягчение воды. Промышленная водоподготовка представляет собой комплекс операций, обеспечивающих очистку воды - удаление из нее вредных примесей, находящихся в молекулярно-растворенном, коллоидом и взвешенном состоянии. Основные операции водоподготовки: очистка от взвешенных примесей отстаиванием, нейтрализация, дегазация и обеззараживание.Умягчение и обессоливание воды состоит в удалении солей кальция, магния и других металлов. В промышленности применяют различные методы умягчения, сущность которых заключается в связывании ионов кальция и магния реагентами в нерастворимые и легко удаляемын соединения. По применяемым реагентам различают способы: известковый(гашеная известь), содовый (кальцинированная сода), натронный(гидроксид натрия) и фосфатный (тринатрийфосфат).Жёсткость воды — совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой. Различают временную жёсткость (карбонатную), образованную гидрокарбонатами и постоянную жёсткость (некарбонатную), вызванную присутствием других солей. Временная жёсткость обусловлена присутствием в воде гидрокарбонатов кальция и магния (Са(НСО3)2; Mg(НСО3)2). Постоянная жесткость воды обусловлена присутствием в воде сульфатов, хлоридов Са и Mg (CaSO4,CaCl2,MgSO4,MgCl2


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: