Виды электрохимической коррозии

Лекция 9. Коррозия металлов.

План лекции

1. Коррозия металлов.

2. Химическая и электрохимическая коррозия. Механизм коррозии. Факторы, определяющие интенсивность коррозии.

3. Виды электрохимической коррозии.

4. Методы защиты металлов от коррозии - покрытия.

5. Электрохимические методы защиты. Ингибиторы коррозии.

 

 

Задачи изучения темы:

В процессе освоения темы студенты получают представление о процессе коррозии, его механизме, факторах, влияющих на коррозионный процесс. Способы защиты металлов от коррозии.

Студент должен знать:

Природу коррозионных процессов. Основные способы защиты металлов от коррозии, их классификация и механизм действия.

 

 

Основная и дополнительная литература

Основная

1. Глинка Н.Л. Общая химия: Учебное пособие для вузов / Под ред. А.И. Ермакова. – изд. 28-е, перераб. и доп. – М.: Интеграл-Пресс, 2000. – С. 27-36.

2. Ахметов Н.С. Общая и неорганическая химия. М: Высш.шк., 2005. 743 с.

3. Угай Я.А. Общая и неорганическая химия. М: Высш.шк, 2004. 527 с.

4. Глинка Н.Л. Задачи и упражнения по общей химии: Учебное пособие для вузов / под ред. В.А. Рабиновича и др. М.: Интеграл-Пресс, 1997. – 240 с.

 

Дополнительная

5. Некрасов Б.В. Основы общей химии. СПб-М: Высш.шк, 2003 Т. 1, 2.

6. Коровин Н.В. Общая химия. М: Высш.шк., 2005. 557 с.

7. Практикум по общей и неорганической химии: Пособие для студентов вузов. / В.И. Фионов, Т.М. Курохтина, З.Н. Дымова и др.; Под ред. Н.Н. Павлова, В.И. Фролова. – 2-е изд., перераб. и доп. – М.: Дрофа, 2002. – С. 33-47.

 

Методические разработки кафедры

8. Гаркушин И.К., Лисов Н.И., Немков А.В. Общая химия для технических вузов. Учебное пособие. Самарск. гос. техн. ун-т, Самара. – 2003. – С. 144-166.

9. Жиляева И.И., Громаковская А.Г. Коррозия металлов. Метод. указания к лабораторной работе.

 

 

1. КОРРОЗИЯ Corrodere (лат.) – разъедать.

Коррозия это разрушение металла и изделий из-за химического взаимодействия с окружающей средой.

Коррозия - окислительно-восстановительный гетерогенный процесс, протекающий на поверхности раздела фаз – металл/жидкость, металл/газ. Это самопроизвольный процесс, приводящий к получению термодинамически более устойчивых соединений.

Ежегодные потери металла из-за коррозии составляют 10 – 12% производственных мировых запасов.

Основные виды коррозии разделяют:

По механизму протекания коррозии:

Химическая – протекает в неэлектролитах – гетерогенное взаимодействие металла с окислителем окружающей среды (газовая, неэлектролитная);

Электрохимическая – протекает в электролитах – взаимодействие металла с окислителем включает анодное растворение металла и катодное восстановление окислителя (электролитная, влажно-атмосферная, почвенная)

 

По характеру разрушения поверхности металла:

Равномерная (общая) – распределяется более или менее равномерно по всей поверхности металла;

Местная – пятнами (язвами);

Точечная (на поверхности) или питтинг (на большой глубине);

Межкристаллитная – по границам зерен (самая опасная – ослабевают связи между зернами структуры сплава);

Подповерхностная – незаметная (под поверхностью металла);

Избирательная – растворение одного из компонентов сплава;

Растрескивание – при одновременном воздействии химических реагентов и высоких механических напряжений;

Селективная – избирательная.

Рассмотрим более подробно химическую и электрохимическую коррозии:

2. ХИМИЧЕСКАЯ КОРРОЗИЯ

Сущность химической коррозии – в окислении металла в результате химического взаимодействия его с окружающей средой.

Среды вызывающие химическое разрушение металла называются агрессивными.

Химическая коррозия осуществляется путем непосредственной передачи электрона от атома металла к атому окислителя.

Химическую коррозию подразделяют на газовую и неэлектролитную (жидкостная неэлектролитная коррозия).

Жидкостная неэлектролитная коррозия развивается при эксплуатации химического оборудования, соприкосновения с нефтью и ее продуктами, жидким бромом, бензином, керосином и др. органикой, т.е. веществами, не проводящими электрический ток.

Коррозия в газах (газовая коррозия наиболее распространенная) происходит при повышенных температурах, когда конденсация влаги на поверхности металла невозможна. Газовой коррозии подвергаются арматура печей, детали двигателей внутреннего сгорания, лопатки газовых турбин и т.п. Газовую коррозию претерпевает также металл, подвергаемый термической обработке. В результате газовой коррозии на поверхности металла образуются соответствующие соединения: оксиды, сульфиды и др. (так например диоксид серы присутствующий в заводских помещениях под действием температуры окисляется образую триоксид серы, который вступает а реакцию с металлом, тем самым разрушая ее)

С повышением температуры скорость газовой коррозии возрастает.

Частный случай газовой коррозии – водородная коррозия (водород связывает углерод находящийся в стали в непредельные углеводороды – метан и т.д.)

Fe3C (цементит) + 2H2 3Fe + CH4

Карбонильная – Me + nCO Me(CO)n

Чистые металлы в большинстве случаев почти не подвергаются коррозии. Даже такой металл, как железо, в совершенно чистом виде не ржавеет. Но обыкновенные металлы всегда содержат различные примеси, что создает благоприятные условия для коррозии.

На ряде металлов образуется тонкий слой оксида.

В качестве примера на рисунке показано образование оксидов на поверхности металла:

Алюминий Железо
4Al + 3O2 ® 2Al2O3 O2 Fe + O2 ® FeO ® Fe2O3 ® Fe3O4 (FeO + Fe2O3)

 

Если пленка прочно связана с поверхностью металла и не имеет механических повреждений, то она защищает металл от дальнейшего окисления. Такие защитные пленки имеются у алюминия, хрома, цинка, марганца, титана, ванадия, никеля и кобальта. Для того чтобы оксидная пленка защищала металл, она должна быть сплошной, обладать высокой адгезией, быть устойчивой к агрессивным средам, обладать коэффициентом термического расширения близким к этому показателю металла.

У железа она пористая, легко отделяется от поверхности и поэтому не способна защитить металл от разрушения.

 

Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, никель, алюминий; применяются также сплавы на основе никеля или кобальта.

 

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Электрохимическая коррозия возникает при контакте двух разнородных металлов (или примеси неметаллов) в среде электролита.

В отличие от химической коррозии, передача электронов идет через токопроводящую среду – электролит. Коррозия протекает в местах контактов металлов, имеющих разные электродные потенциалы, которые выполняют роль электродов.

Во всех случаях различной неоднородности на поверхности металла самопроизвольно возникают локальные микрогальванические элементы – гальванопары.

Гальванокоррозия
(–) А, Fe | H2SO4| Cu, К (+) А (–) Fe – 2ē ® Fe2+ К (+) 2Н++ 2ē ® Н2­
Fe + 2Н+® Fe2+ + Н2­ Fe + H2SO4 ® FeSO4+ Н2­

При гальванокоррозии поток электронов направлен от более активного металла к менее и более активный металл разрушается. При возникновении гальвано пары появляется ток тем большей силы, чем дальше отстоят металлы в ряду напряжений.

 

Скорость электрохимической коррозии зависит от природы металла, природы электролита и температуры.

Электролит Катодный процесс
Вода (H2O) 2H2O + 2ē → 2OH + H2
Кислота (HCl) ++ 2ē ® Н2­
Влажный воздух (H2O, O2) 2H2O + O2↑ + 4ē → 4OH

 

Скорость коррозии металла повышается также при включении в него неметаллических примесей, потенциал которых выше потенциала основного металла. Так, включения оксидов или шлаков, в стали сильно снижают ее коррозионную стойкость.

Примеси, находящиеся в окружающей среде, могут адсорбироваться на поверхности металла и также каталитически влиять на коррозию, ускоряя или замедляя ее. Например, большинство сплавов железа корродирует в морской воде гораздо быстрее, чем в воде с такой же концентрацией кислорода, не содержащей хлоридов. Это обусловлено тем, что хлорид-ионы, адсорбируясь на поверхности железа, препятствует образованию на ней защитных слоев.

Виды электрохимической коррозии

Наиболее характерные виды электрохимической коррозии:

Атмосферная – протекает во влажном воздухе при обычной температуре. Поверхность металла покрывается пленкой влаги, содержащей растворенный кислород. Интенсивность коррозии возрастает с увеличением влажности воздуха, содержания в нем газообразных СО2 и SO2, пыли, копоти, а также при наличии на поверхности металла шероховатостей и трещин, облегчающих конденсацию влаги.

Различают: сухую атмосферную коррозию, протекающую при относительной влажности 60%, под действием кислорода, и мокрую атм. коррозию – разрушение металлических конструкций под действием дождя, снега и туманов.

Почвенная – металлы соприкасаются с влагой почвы, содержащей растворенный кислород. Анодному разрушению подвергаются участки с большей увлажненностью и меньшим доступом воздуха. Особенно коррозионно-активны почвы с высокой влажностью, кислотностью и электрической проводимостью. Поэтому на скорость газовой коррозии влияют следующие характеристики – пористость, рН, электропроводность, наличие растворенных солей.

В таких условиях трубопроводы разрушаются в течение полугода после их укладки, если не принимаются специальные меры для из защиты.

Морская коррозия – это коррозия в морской воде, агрессивность которой обусловлена содержанием кислорода и наличием в ней хлоридов металлов, препятствующих образованию эффективных защитных пленок. Наиболее сильно она протекает на границы воды и атмосферы.

Электрокоррозия – происходит под действием блуждающих токов, возникающих от посторонних источников (линии электропередач, электрические железные дороги, различные электроустановки, работающие на постоянном электрическом токе) от которых через недостаточную электроизоляцию ток может истекать в грунт. Блуждающий ток, попав на находящийся в земле металлический предмет, в некотором месте выходит в грунт, вызывая разрушение места выхода – которое называется анодным выходом, где наблюдается очень интенсивная коррозия. Блуждающие токи вызывают коррозию газопроводов, нефтепроводов, электрокабелей, различных подземных металлических сооружений.

 

4. МЕТОДЫ БОРЬБЫ С КОРРОЗИЕЙ

Изоляция металлов от агрессивной среды ( ПОКРЫТИЯ ):

Металлические покрытия – покрытие защищаемого металла слоем другого металла, практически не корродирующего в тех же условиях.

При покрытии изделия различными металлами надо помнить, что покрытие и защищаемый металл могут образовывать гальваническую пару. Ее работа в определенных условиях может либо усиливать защитное действие, либо наоборот усиливать коррозию защищаемого металла.

Анодное покрытие. Например при локальном нарушении цинкого покрытия в гальвано паре цинк–железо анодом будет цинк, который и будет разрушаться, защищая железо.

Катодное покрытие. А в паре олово–железо при нарушении оловянного покрытия разрушению будет подвергаться железо, т.к. в этой паре именно оно является анодом.

Различия коррозиционной стойкости покрытий в тех или иных агрессивных средах и свойства конечных продуктов коррозии определяют специфические области применения этих покрытий.

Анодное покрытие
  (–) А, Zn | H2SO4| Fe, К (+) А (–) Zn – 2ē ® Zn2+ К (+) 2Н++ 2ē ® Н2­  
  Zn + 2Н+® Zn2+ + Н2­ Zn + H2SO4 ® ZnSO4+ Н2­  

 

Катодное покрытие
  (–) А, Fe | H2O, O2| Sn, К (+) А (–) Fe – 2ē ® Fe2+ К (+) 2H2O + O2 + 4ē → 4OH  
  2Fe + 2H2O + O2® 2Fe2+ + 4OH 2Fe + 2H2O + O2 ® Fe(OH)2 ¯  

 

Неметаллические покрытия – пленки высокополимерных веществ (каучуки, пластмассы), лаки, олифа, композиции из высокополимерных и неорганических красящих веществ.

Покрытие резиной называется – гуммирование, а бетоном – торкретирование

90% всех металлических изделий защищают подобным образом. Дешевы, их просто наносить, но они не прочны.

Химические покрытия(более надежны):

пленки из оксидов металлов (толщиной 0,3 микрона), получаемые при действии кислорода или подходящих окислителей (HNO3, K2Cr2O7 и др.) на поверхность металлов. Часто такие оксидные пленки образуются на поверхности металлов просто при соприкосновении с воздухом, что делает химически сравнительно активные металлы (Zn, Al) практически коррозионно-стойкими;

подобную же роль могут играть защитные нитридные пленки, образующиеся при действии азота или аммиака на поверхность некоторых металлов;

искусственное оксидирование (толщиной до 30 микрон), азотирование и фосфатирование, причем лакокрасочные покрытия наносятся на оксидированный, азотированный и фосфатированный металл.

Так оксидирование железа (выроненная сталь) проводят в смеси гидроксида натрия (800г/л) с нитратом (50г/л) и нитритом (200г/л) натрия при температуре 140 оС.

Оксидирование железа приводит к формированию на его поверхности пленок Fe3O4 – черного цвета или Fe2O3 – коричневого цвета.

А для фосфатирования применяют фосфаты марганца и железа, которые приводят к формированию трудно растворимых пленок трехвалентного железа.

Фосфатные и оксидные пленки нередко используют как электроизоляционные покрытия, например на трансформаторных пластинах (пробивное напряжение таких пленок может достигать 600 В).

5. Электрохимические методы защиты – основаны на изменении потенциала защищаемого металла и не связаны с изоляцией металла от коррозионной среды.

катодная (электрозащита) – защищаемая конструкция, находящаяся в среде электролита (например, в почвенной воде), присоединяется к катоду внешнего источника электричества (к отрицательному полюсу). В ту же агрессивную среду помещают кусок старого металла (рельс или балка), присоединенный к аноду внешнего источника электричества. Фактически он служит источником электронов, поставляемых на катод. В процессе коррозии этот кусок старого металла разрушается.

 

Катодная защита
   

протекторная (анодная) – используется специальный анод – протектор, в качестве которого применяют металл более активный, чем металл защищаемой конструкции (Zn, Mg). Протектор соединяют с защищаемой конструкцией проводником электрического тока. В процессе коррозии разрушается протектор.

Этот метод применяется для защиты от коррозии лопастей турбин подводных частей кораблей, для защиты холодильного оборудования, работающего с солевыми продуктами.

Воздействие на агрессивную среду

Для замедления коррозии металлических изделий в агрессивную среду вводят вещества (чаще всего органические), называемые ингибиторами коррозии, которые пассивируют поверхность металла и препятствуют развитию коррозионных процессов. Это имеет большое значение в тех случаях, когда металл необходимо защищать от разъедания кислотами. Ингибиторы коррозии широко применяют при химической очистке паровых котлов от накипи, для снятия окалины с отработанных изделий, а также при хранении и перевозке HCl в стальной таре. В качестве органических ингибиторов коррозии применяют тиомочевину (сульфид-диамид углерода C(NH2)2S), диэтиламин, уротропин (гексаметилентетрамин (CH2)6N4) и другие производные аминов, а в качестве неорганических – силикаты, нитриты, дихроматы щелочных металлов и др.

К этой же группе методов защиты металлов от коррозии относится также освобождение воды, идущей на питание паровых котлов, от растворенного в ней кислорода, что достигается, например, при фильтровании воды через слой железных стружек.

 

Протекторная зашита
 
    (–) А, Zn | H2O, O2| Fe, К (+) А (–) Zn – 2ē ® Zn2+ К (+) 2H2O + O2 + 4ē → 4OH  
2Zn + 2H2O + O2 ® 2Zn2+ + 4OH 2Zn + 2H2O + O2 ® 2Zn(OH)2
       

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: