В итоге каждый атом излучает строго определенный набор частот излучений, соответствующий разнице энергий между уровнями

Зависимость величины излучаемой атомами или молекулами энергии от длины волны или частоты световой волны называется спектром испускания, а поглощаемой - спектром поглощения.

Интенсивность спектральных линий определяется числом одинаковых переходов, происходящих в единицу времени, и поэтому зависит от количества излучающих (поглощающих) атомов и вероятности соответствующего перехода.

Атомными спектрами называют как спектры испускания, так и спектры поглощения, которые возникают при квантовых переходах между уровнями свободных или слабо взаимодействующих атомов. Атомные спектры линейчаты.

 

Молекулярные спектры (испускания и поглощения) возникают при квантовых переходах молекул с одного энергетического уровня на другой и состоят из совокупности более или менее широких полос, которые представляют собой тесно расположенные линии. Сложность молекулярных спектров по сравнению с атомными обусловлена большим разнообразием движений и, следовательно, энергетических переходов в молекуле.

 

Спектры поглощения и испускания вещества являются источником информации о качественном составе (из каких молекул или атомов состоит вещество), количественном соотношении различных компонентов вещества, их состоянии и структурной организации.

В спектральном анализе используют как спектры испускания (эмиссионный спектральный анализ), так и спектры поглощения (абсорбционный спектральный анализ).

В зависимости от энергии (частоты) фотона, испускаемого или поглощаемого атомом (или молекулой), классифицируют следующие виды спектроскопии: радио-, ИК, УФ, видимого излучения, рентгеновская.

По типу вещества источника спектра различают атомные, молекулярные спектры и спектры кристаллов.

В медицинских целях эмиссионный анализ служит в основном для определения микроэлементов в тканях организма, небольшого количества атомов металлов в консервированных продуктах с гигиенической целью, некоторых элементов в трупных тканях для целей судебной медицины и так далее.

Абсорбционные спектры широко используются в современных биохимических и биофизических работах.

Различают качественный (определение состава вещества) и количественный (определение концентраций соединений, входящих в данное вещество) спектральный анализ.

 

При торможении быстрых заряженных частиц атомами вещества анода возникает электромагнитное излучение, которое называют тормозным рентгеновским излучением.

При торможении большого количества электронов образуется сплошной (непрерывный) спектр рентгеновского излучения.

 
 

 

Ф

Рис. 44. Спектр тормозного рентгеновского излучения

Короткое излучение возникает, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

; м, с =3.108 м/с.

Поток рентгеновского излучения (Ф):

Z – порядковый номер атома вещества анода;

k = – коэффициент пропорциональности;

I – сила тока в рентгеновской трубке;

U – напряжение в рентгеновской трубке.

Увеличивая напряжение на рентгеновской трубке, на фоне сплошного спектра появляется линейчатый спектр, который соответствует характеристическому рентгеновскому излучению (рис. 45).

Характеристическое рентгеновское излучение возникает из-за того, что некоторые ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, испуская рентгеновские кванты электромагнитного излучения:

Фλ

       
     
     

Рис. 45.

С увеличением заряда атома анода увеличивается частота излучаемого характеристического излучения. Такую закономерность называют законом Мозли:

,

где – частота спектральной линии характеристического рентгеновского излучения;

Z – атомный номер испускающего элемента; А и В – постоянные.

Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра.

Характеристическое рентгеновское излучение – электромагнитное излучение, испускаемое при переходах

электронов с внешних электронных оболочек атома на внутренние (характеристический спектр). Длина волны характеристического рентгеновского излучения, испускаемого химическими элементами, зависит от атомного номера элемента. Кривая соответствует закону Мозли: чем больше атомный номер элемента, тем меньше длина волны характеристической линии. Закон Мозли – линейная зависимость квадратного корня

из частоты характеристического рентгеновского излучения от атомного номера химического элемента.

Тормозное рентгеновское излучение (рентгеновские лучи) с непрерывным энергетическим спектром - коротковолновое электромагнитное (фотонное) излучение. Образуется при уменьшении кинетической энергии (торможении, рассеянии)

быстрых заряженных частиц, например, при торможении в кулоновском поле ускоренных электронов.

Существенно для легких частиц электронов и позитронов. Спектр тормозного излучения непрерывен,

максимальная энергия равна начальной энергии частицы.

Рентгеновские спектры, спектры испускания и поглощения рентгеновских лучей. Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией.Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е1 начального и Е2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой v=(Е1- Е2)/h, где h - постоянная Планка. Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

49.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: