Вопрос 12. Донорно-акцепторная связь. Водородная связь

Если одна из двух молекул имеет атом со свободными орбиталями, а другая-атом с парой неподеленных электронов, то между ними происходит донорно-акцепторное взаимодействие, которое приводит к образованию ковалентной связи. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или координационных соединений. Внутренняя сфера, называется также комплексом, включает центральный ион или атом, вокруг которого координируются отрицательно заряженные ионы или нейтральные молекулы.

Водородная связь.

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H2­O, NH3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H2O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H2O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

 

Вопрос 13 Металлическая связь Cтруктура твердых тел.

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

Механизм металлической связи

Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt, Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

[править]Другие свойства

 

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

Структура твердых тел. Твердые тела характеризуются, как правило, регулярным рас­по­ложением атомов и молекул. Раз­ли­чают аморф­ную и крис­тал­ли­ческую стру­к­ту­ру твердых тел.

Аморф­ные стру­к­ту­ры - это структуры, не име­ю­щие явно вы­ра­­­­жен­­ного даль­него по­рядка в расположении ато­мов. К таким ма­­­­те­риалам относятся, на­пример, стекла, многие орга­нические ма­­­териалы и т. д.

Кристаллические структуры - это стру­­к­ту­ры, пред­став­ля­ю­щие пе­ри­о­ди­че­с­­кую решетку, в узлах которой рас­по­ло­­жены ато­­мы (рис. 1.4). Трехмерная кри­­­стал­ли­чес­кая структу­ра пред­ста­в­­ля­ет ре­­­­ше­тку, по­стро­ен­ную на трех ко­­ор­ди­на­­­т­ных осях x, y, z, рас­­по­­ло­­же­н­­ных в об­­­щем случае под углами , , . Периоды тран­с­­ля­­ции атомов по осям (параметры решетки) рав­ны, со­­­­­от­вет­с­т­ве­н­но, a, b, c. Эле­мен­та­р­­ная яче­й­ка кри­стал­ла - это параллелепипед, по­­с­тро­ен­­ный на ве­­к­то­рах трансляции a, b, c. Такая ячейка называется примитивной.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: