Электродные процессы: двойной электрический слой, (стандартный) электродный потенциал

Электродные процессы - электрохимические превращения на границе электрод/электролит, при которых через эту границу происходит перенос заряда, проходит электрический ток. В зависимости от направления перехода электронов (с электрода на вещество или наоборот) различают катодные и анодные электродные процессы, приводящие соответственно к восстановлению веществ. Точной мерой скорости электродных процессов служит плотность тока j(a/см^2).

Электродный потенциал -разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение Э. потенциала обусловливается переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина Э. потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Двойной электрический слой - два весьма близких друг к другу слоя электрических зарядов разного знака, но с одинаковой поверхностной плотностью, возникающие на границе раздела двух фаз. Двойной эл. слой в целом электронейтрален. При пересечении Двойного эл. слоя электрический потенциал изменяется скачком. Двойной эл. слой на поверхности металла возникает из-за того, что электроны металла несколько выходят за пределы решётки, образованной положительными ионами. Скорость электродных процессов может меняться в очень широких пределах в зависимости от природы электрода. На скорость электродных процессов влияют концентрация реагирующих частиц и температура.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

,где

Е-электродный потенциал, E0 — стандартный электродный потенциал, измеряется в вольтах;

R-универсальная газовая постоянная, равная 8.31 Дж/(моль·K);T- абсолютная температура;F-постоянная Фарадея, равная 96485,35 Кл·моль−1;n- число молей электронов, участвующих в процессе;aox и ared — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

30) Химические источники тока: гальванические элементы (ЭДС), топливные элементы, аккумуляторы. Хими́ческийисто́чникто́ка — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию. Гальвани́ческийэлеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Гальванические элементы характеризуются: э.д.с., емкостью, энергией, которую он может отдать во внешнюю цепь, сохраняемостью.

Гальванические первичные элементы - это устройства для прямого преобразования химической энергии, заключенных в них реагентов (окислителя и восстановителя), в электрическую. Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие прекращается после расхода реагентов.

· Электродвижущая сила (ЭДС) гальванического элемента зависит от материала электродов и состава электролита. ЭДС описывается термодинамическими функциями, протекающих электрохимических процессов, в виде уравнения Нернста.

· Ёмкость элемента – это количество электричества, которое источник тока отдает при разряде. Ёмкость зависит от массы запасенных в источнике реагентов и степени их превращения, снижается с понижением температуры или увеличением разрядного тока.

· Энергия гальванического элемента численно равна произведению его ёмкости на напряжение. С увеличением количества вещества реагентов в элементе и до определенного предела, с увеличением температуры, энергия возрастает. Энергию уменьшает увеличение разрядного тока.

· Сохраняемость – это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.

Вторичные источники тока ( аккумуляторы ) - это устройства, в которых электрическая энергия внешнего источника тока превращается в химическую энергию и накапливается, а химическая – снова превращается в электрическую. Одним из наиболее распространенных аккумуляторов является свинцовый (или кислотный). Электролитом является 25-30 % раствор серной кислоты. Электродами кислотного аккумулятора являются свинцовые решетки, заполненные оксидом свинца, который при взаимодействии с электролитом превращается в PbSO4.

Электрохимические генераторы ( топливные элементы ) - это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента электроды не расходуются. Восстановителем является водород (H2), метанол (CH3OH), метан (CH4) в жидком или газообразном состоянии. Окислителем обычно является кислород воздуха или чистый. В кислородно-водородном топливном элементе со щелочным электролитом происходит превращение химической энергии в электрическую.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: