Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений

Направленность связи обусловливает молекулярное строение веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными. В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2рх-орбиталью атома фтора:

Направленность связи в этой молекуле определяется ориентацией 2рх-орбитали атома фтора (рис. 3). Перекрывание происходит в направлении оси симметрии х. Любой другой вариант перекрывания энергетически менее выгоден.

НАСЫЩАЕМОСТЬ — характерное свойство ковалент­ной связи. Она проявляется в способности атомов образо­вывать ограниченное число ковалентных связей. Это свя­зано с тем, что одна орбиталь атома может принимать участие в образовании только одной ковалентной хими­ческой связи. Данное свойство определяет состав молеку­лярных химических соединений. Так, при взаимодейст­вии атомов водорода образуется молекула Н2, а не Н3. С точки зрения МВС третий атом водорода не может присо­единиться, так как спин его электрона окажется парал­лельным спину одного из спаренных электронов в молеку­ле. Способность к образованию того или иного числа кова­лентных связей у атомов различных элементов ограни­чивается получением максимального числа неспаренных валентных электронов.

12. ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ - выравнивание длин хим. связей и валентных углов при образовании хим. связей валентными s-, p-, d - и т.д. электронами (атомными орбиталями) одного атома. Г. а. о. описывает возбуждённые состояния атома в хим. соединении.

С помощью методов рентг. структурного анализа, спектральных измерений и т. п. установлено, что хим. связи, образуемые электронами атома, находящимися в разл. квантовых состояниях, эквивалентны, вопреки казалось бы очевидному предположению о их различии (так, напр., р -электроны должны были бы создавать более прочную связь, чем s-электроны). Выравнивание связей является результатом смешивания при хим. взаимодействии состояний электронов в атоме, что приводит к образованию гибридных орбиталей, направленных в сторону образующейся связи.Гибридные ф-ции, соответствующие новым орбиталям, являются линейными комбинациями s-, p-, d - и т. д. атомных одноэлектронных При гибридизации атомных орбиталей электронные облака концентрируются в направлении линии связи (оси x).

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)[3].

Тип гибридизации Число гибридных орбиталей Геометрия Структура Примеры
sp   Линейная BeF2, CO2, NO2+
sp2   Треугольная BF3, NO3-, CO32-
sp3   Тетраэдрическая CH4, ClO4-, SO42-, NH4+
dsp2   Плоскоквадратная Ni(CO)4, XeF4
sp3d   Гексаэдрическая PCl5, AsF5
sp3d2   Октаэдрическая SF6, Fe(CN)63-, CoF63-

В качестве примера рассмотрим молекулы NH3 и H2O. Атомы азота и кислорода склонны к sp 3-гибридизации. У азота на sp 3-ГО, поимо трех связывающих пар электронов, образующих связь с тремя атомами водорода, остается одна несвязывающая пара. Именно она, занимая одну sp 3-ГО, искажает угол связи H√N√H до 107,3╟. В молекуле H2O таких несвязывающих пар две, и угол H√O√H равен 104,5

13. т еория отталкивания электронных пар валентных орбиталей (ОЭПВО) — один из подходов в химии, необходимый для объяснения и предсказания геометрии молекул. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии)

 
Тип молекулы Конфигурация Расположение электронных пар Геометрия Примеры
AX1En Двухатомная HF, O2
AX2E0 Линейная BeCl2, HgCl2, CO2
AX2E1 Искаженная NO2, SO2, O3
AX2E2 Искаженная H2O, OF2
AX2E3 Линейная XeF2, I3
AX3E0 Равносторонний треугольник BF3, CO32−, NO3, SO3
AX3E1 Тригональная пирамида NH3, PCl3
AX3E2 Т-образная ClF3, BrF3
AX4E0 Тетраэдр CH4, PO43−, SO42−, ClO4
AX4E1 Дисфеноид («Качели») SF4
AX4E2 Плоскоквадратная геометрия XeF4
AX5E0 Тригональная бипирамида PCl5
AX5E1 Квадратная пирамида ClF5, BrF5
AX6E0 Октаэдр SF6
AX6E1 Пентагональная пирамида XeF6
AX7E0 Пентагональная бипирамида IF7

14. Периодическая таблица и электронные конфигурации атомов. В настоящее время известно более 500 вариантов изображения периодической системы: это различные формы передачи периодического закона.Первым вариантом системы элементов, предложенным Д. И. Менделеевым 1 марта 1869 г., был так называемый вариант длинной формы. В этом варианте периоды располагались одной строкой. В декабре 1870 г. он опубликовал второй вариант периодической системы — так называемую короткую форму. В этом варианте периоды разбиваются на ряды, а группы — на подгруппы (главную и побочную).В периодической системе по горизонтали имеется 7 периодов, из них первые три называются малыми, а остальные — большими. В первом периоде находится 2 элемента, во втором и третьем — по 8, в четвертом и пятом — по 18, в шестом — 32, в седьмом (незавершенном) — 21 элемент. Каждый период, за исключением первого” начинается щелочным металлом и заканчивается благородным газом (7-й период — незаконченный).Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами. В системе 10 рядов. Каждый малый период состоит из одного ряда, каждый большой период — из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов (четвертом, шестом, восьмом и десятом) находятся одни металлы, и свойства элементов в ряду слева направо изменяются слабо. В нечетных рядах больших периодов (пятого, седьмого и девятого) свойства элементов в ряду слева направо изменяются, как у типических элементовОсновным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Например, в четвертом периоде степени окисления элементов от К до Mn изменяются от +1 до +7, затем следует триада Fe, Со, Ni (это элементы четного ряда), после чего наблюдается такое же возрастание степеней окисления у элементов от Cu до Br (это элементы нечетного ряда). То же мы видим в остальных больших периодах, исключая седьмой, который состоит из одного (четного) ряда. Дважды повторяются в больших периодах и формы соединений элементов.В шестом периоде вслед за лантаном располагаются 14 элементов с порядковыми номерами 58-71, называемых лантаноидами (слово “лантаноиды” означает подобные лантану”, а “актиноиды” — “подобные актинию”). Иногда их называют лантанидами и актинидами, что означает следующие за лантаном, следующие за актинием). Лантаноиды помещены отдельно внизу таблицы, а в клетке звездочкой указано на последовательность их расположения в системе: La-Lu. Химические свойства лантаноидов очень сходны. Например, все они являются реакционно-способными металлами, реагируют с водой с образованием гидроксида и водорода. Из этого следует, что у лантаноидов сильно выражена горизонтальная аналогия. В седьмом периоде 14 элементов с порядковыми номерами 90-103 составляют семейство актиноидов. Их также помещают отдельно — под лантаноидами, а в соответствующей клетке двумя звездочками указано на последовательность их расположения в системе: Ас-Lr. Однако в отличие от лантаноидов горизонтальная аналогия у актиноидов выражена слабо. Они в своих соединениях проявляют больше различных степеней окисления. Например, степень окисления актиния +3, а урана +3, +4, +5 и +6. Изучение химических свойств актиноидов крайне сложно вследствие неустойчивости их ядер.В периодической системе по вертикали расположены восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Как правило, высшая положительная степень окисления элементов равна номеру группы. Исключением являются фтор — его степень окисления равна -1; медь, серебро, золото проявляют степень окисления +1, +2 и +3; из элементов VIII группы степень окисления +8 известна только для осмия, рутения и ксенона.В VIII группе размещены благородные газы. Ранее считалось, что они не способны образовывать химические соединения. Каждая группа делится на две подгруппы — главную и побочную, что в периодической системе -подчеркивается смещением одних вправо, а других влево. Главную подгруппу составляют типические элементы (элементы второго и третьего периодов) и сходные с ними по химическим свойствам элементы больших периодов. Побочную подгруппу составляют только металлы — элементы больших периодов. VIII группа отличается от остальных. Кроме главной подгруппы гелия она содержит три побочные подгруппы: подгруппу железа, подгруппу кобальта и подгруппу никеля.Химические свойства элементов главных и побочных подгрупп значительно различаются. Например, в VII группе главную подгруппу составляют неметаллы F, С1, Вг, I, Аt, побочную — металлы Мn, Тc, Rе. Таким образом, подгруппы объединяют наиболее сходные между собой элементы.Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения, форм таких соединений 4. Их также изображают общими формулами в последовательности RН4, RН3, RН2, RН. Формулы водородных соединений располагаются под элементами главных подгрупп и только к ним относятся.Свойства элементов в подгруппах закономерно изменяются: сверху вниз усиливаются металлические свойства и ослабевают неметаллические. Очевидно, металлические свойства наиболее сильно выражены у франция, затем у цезия; неметаллические — у фтора, затем — у кислорода.

Период – горизонтальный ряд, имеющий одинаковое число электронных слоев, номер периода совпадает со значением главного квантового числа n внешнего уровня (слоя); таких периодов в периодической системе семь. Второй и последующие периоды начинаются щелочным элементом (ns 1) и заканчивается благородным газом (ns 2 np 6). По вертикали периодическая система подразделяется на восемь групп, которые делятся на главные – А, состоящие из s - и p -элементов, и побочные – B-подгруппы, содержащие d -элементы. Подгруппа III B, кроме d -элементов, содержит по 14 4 f - и 5 f -элементов (4 f - и 5 f -семейства). Главные подгруппы содержат на внешнем электронном слое одинаковое число электронов, которое равно номеру группы. В главных подгруппах валентные электроны (электроны, способные образовывать химические связи) расположены на s - и p -орбиталях внешнего энергетического уровня, в побочных – на s -орбиталях внешнего и d -орбиталях предвнешнего слоя. Для f -элементов валентными являются (n – 2) f - (n – 1) d - и ns -электроны. Сходство элементов внутри каждой группы – наиболее важная закономерность в периодической системе. Следует, кроме того, отметить такую закономерность, как диагональное сходство у пар элементов Li и Mg, Be и Al, B и Si и др. Эта закономерность обусловлена тенденцией смены свойств по вертикали (в группах) и их изменением по горизонтали (в периодах). Все сказанное выше подтверждает, что структура электронной оболочки атомов элемента изменяется периодически с ростом порядкового номера элемента. С другой стороны, свойства определяются строением электронной оболочки и, следовательно, находятся в периодической зависимости от заряда ядра атома. Далее рассматриваются некоторые периодические свойства элементов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: