Несмотря на сложность в эксплуатации (необходимость постоянного притока газообразного водорода) водородный электрод был известен давно

§ Водородные электроды собственной конструкции были центральным инструментом работ С. П. Л. Сёренсена, в результате которых появилась современная теория рН-метрии (1909).

§ В первых опытах по внутрижелудочной рН-метрии использовался рН-зонд Дж. Ф. Макклендона, электродом сравнения в котором был водородный электрод, вводимый в составерН-зонда в желудок человека (1915).

 

5) Портландцемент (англ. Portlandcement) — гидравлическое вяжущее вещество, в составе которого преобладают силикаты кальция (70-80 %). Это вид цемента, наиболее широко применяемый во всех странах.

Название получил по имени острова Портленд (Portland) в Англии, так как по цвету похож на добываемый там природный камень.

Основой портландцемента являются силикаты кальция (алит и белит).

Процесс производства

Портландцемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция (3СаО∙SiO2 и 2СаО∙SiO2 70-80 %).

Самые распространённые методы производства портландцемента так называемые «сухой» и «мокрый». Всё зависит от того, каким способом смешивается сырьевая смесь — в виде водных растворов или в виде сухих смесей.

При измельчении клинкера вводят добавки: 1,5…3,5 % гипса СaSO4∙2H2O (в перерасчёте на ангидрид серной кислоты SO3) для регулирования сроков схватывания, до 15 % активных минеральных добавок — для улучшения некоторых свойств и снижения стоимости цемента.

Сырьём для производства портландцемента служат смеси, состоящие из 75…78 % известняка (мела, ракушечника, известнякового туфа, мрамора) и 22…25 % глин (глинистых сланцев, суглинков), либо известняковые мергели, использование которых упрощает технологию. Для получения требуемого химического состава сырья используют корректирующие добавки: пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы.

При мокром способе производства уменьшается расход электроэнергии на измельчение сырьевых материалов, облегчается транспортирование и перемешивание сырьевой смеси, выше гомогенность шлама и качество цемента, однако расход топлива на обжиг и сушку составляет на 30-40 % больше чем при сухом способе.

Обжиг сырьевой смеси проводится при температуре 1 470°C в течение 2…4 часов в длинных вращающихся печах (3,6х127 м, 4×150 м и 4,5х170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы. Вращающуюся печь мокрого способа условно можно поделить на зоны:

§ сушки (температура материала 100…200 °C — здесь происходит частичное испарение воды);

§ подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO2 + 2H2O; далее при температурах 600…1 000 °C происходит распад алюмосиликатов на оксиды и метапродукты.

§ декарбонизации (900…1 200 °C) происходит декарбонизация известнякового компонента: СаСО3 → СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O3 — сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;

§ экзотермических реакций (1 200…1 350 °C) завершется процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4 основных минералов клинкера;

§ спекания (1 300→1 470→1 300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);

§ охлаждения (1 300…1 000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Узнать данный вид цемента можно по внешнему виду — это зеленовато-серый порошок. Как и все цементы, если к нему добавить воду, он при высыхании принимает камнеобразное состояние и не имеет существенных отличий по своему составу и физико-химическим свойствам от обычного цемента.

Существуют следующие виды портландцемента:

§ быстротвердеющий;

§ пластифицированный;

§ гидрофобный;

§ сульфатостойкий;

§ дорожный;

§ белый и цветной;

§ с умеренной экзотермией;

§ с поверхностноактивными органическими добавками.

 

Билет № 20

1) Определите эквивалент Аэк и эквивалентную массу азота, серы и хлора в соединениях NH3, H2S, HCL.

Решение: (Аэк)- реальная или условная частица, которая в кислотно- основных реакциях и реакциях ионного обмена равноценна одному атому или одному иону водорода. Число, которое показывает какая часть моль элемента или вещества эквивалентна, 1 моль атома водорода называется фактором эквивалентности (fэк).

(fэк)- это величина обратная эквивалентному числу Z этого вещества в конкретной реакции.

Итак, эквивалент- условная химическая частица в z раз меньшая, чем соответствующая формульная единица вещества, участвующего в конкретной реакции.

z(кислоты) = n(H+), т.е. числу атомов водорода способного замещаться на металл.
z(основания) = n(OH-), т.е. числу гидроксильных групп.
z(соли) = n*m, где n- степень окисления металла, m- количество атомов металла в соли.
z(ОВР) = +- ne, т.е. числу отдельных электронов (для восстановления), либо числу принятых электронов, для окислителя.

Мэк = fэк * Mr

Эквивалентная масса азота в NH3 равна: Аэк = fэк * Ar = 1 Ar = 14 = 4,64 г/моль

z 3

Эквивалентная масса серы в H2S равна: Аэк = 1 * 32 = 16 г/моль

Эквивалентная масса хлора в HCL равна: Аэк = 1 * 35,5 = 35,5 г/моль

2) Какое максимальное количество электроннов…

Принцип Паули позволяет рассчитать максимальное число электронов на каждом энергетическом уровне и подуровне в атоме. Максимальное число электронов на подуровне с орбитальным квантовым числом l равно 2(2l + 1). При l = 0 (s-подуровень) магнитное квантовое число тоже равно нулю. Следовательно, на s-подуровне имеется всего одна орбиталь, и максимальное число электронов на s-подуровне каждого электронного слоя равно двум. При l = 1 (p-подуровень) магнитное квантовое число ms может принимать три значения. На трёх p-орбиталях может находиться не более шести электронов. При l = 2 (d-подуровень) магнитное квантовое число может принимать пять значений и, следовательно, на пяти d-орбиталях может находиться до 10 электронов. При l = 3 (f-подуровень) магнитное квантовое число может принимать семь значений, следовательно, на семи d-орбиталях может находиться до 14 электронов.

3)
Закон Гесса

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

§ Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

Закон открыт русским химиком Г. И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: