Блок вопросов 9 «Полимерные органические материалы»

1. Реакции полимеризации. Полиэтилен, полипропилен, поливинилхлорид, полистирол.

Реакции полимеризации - реакции, протекающие с участием большого числа молекул и приводящие к образованию высокомолекулярных соединений).

Полиэтилен — термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода. Самый распространённый в мире пластик. Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80—120°С), при охлаждении застывает, адгезия (прилипание) — чрезвычайно низкая.

Полипропилен — это полимер, который получают промышленным путем из газа пропилена (продукт нефтепереработки) путем полимеризации.

Химические свойства: материал устойчив к воде и агрессивным средам.

Физические свойства: материал морозостойкий от -5 до -20 градусов, хорошая износостойкость, в тонких пленках прозрачен. Температура плавления от 160 градусов.

Поливинилхлорид — бесцветная, прозрачная пластмасса, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью (−15 °C). Нагревостойкость: +65 °C. Химическая формула: [-CH2-CHCl-]n

Полистирол — продукт полимеризации стирола (винилбензола) относится к полимерам класса термопластов.

Имеет химическую формулу вида: [-СН2-СН(С6Н5)-]n

Полистирол имеет низкую плотность (1060 кг/м³), термическую стойкость (до 105 °С), усадка при литьевой переработке 0,4-0,8 %. Полистирол обладает отличными диэлектрическими свойствами и неплохой морозостойкостью (до −40 °C). Имеет невысокую химическую стойкость (кроме разбавленных кислот, спиртов и щелочей).

2. Реакции поликонденсации. Фенолформальдегидные смолы, карбамидоформальдегидные смолы, эпоксидные смолы, фурановые смолы.

Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.

Фенолформальдегидные смолы - продукты поликонденсации фенола с формальдегидом. Отвержденные смолы характеризуются высокими тепло-, водо- и кислостойкостью, а в сочетании с наполнителями и высокой механической прочностью.

Карбамидоформальдегидные смолы — это продукт поликонденсации карбамида с формальдегидом. Карбамидоформальдегидные смолы нашли широкое распространение в различных сферах производства и строительства. Они применяются при производстве карбамидно-формальдегидного пенопласта, древесностружечных и древесноволокнистых плит, а также фанеры. Кроме того они применяются при изготовлении специальных влагопрочных сортов бумаги и картона.

Эпоксидные смолы - это олигомерные продукты поликонденсации эпихлоргидрина с многоатомными фенолами, спиртами, полиаминами, многоосновными кислотами, а также продукты эпоксидирования (т. е. введения эпоксидных групп) соединений, содержащих не менее двух двойных связей.

Фурановые смолы — термореактивные олигомеры, образующиеся из соединений, содержащих фурановый цикл. Жидкие или твёрдые вещества от тёмно-красного до чёрного цветов; плотность 1,1-1,2 г/см³; растворяются в ацетоне; отверждаются при нагревании (150—170 гр. С) или (и) в присутствии катализаторов.

3. Кремнийорганические полимеры. Битумы и дегти.

Кремнийорганические соединения — соединения, в молекулах которых имеется связь между атомами кремния и углерода. Кремнийорганические соединения иногда называют силиконами, от латинского названия кремния «силициум». Кремнийорганические соединения используются для производства смазок, полимеров, резин, каучуков, кремнийорганических жидкостей и эмульсий. Кремнийорганические соединения применяются в косметике, бытовой химии, лакокрасочных материалах, моющих средствах. Отличительной особенностью продукции на основе кремнийорганических соединений от продукции на основе обычных органических соединений являются, как правило, более высокие эксплуатационные качества и характеристики, а также безопасность применения человеком. Кремнийорганические полимеры могут использоваться для изготовления форм в кулинарии.

Битумы — твёрдые или смолоподобные продукты, представляющие собой смесь углеводородов и их азотистых, кислородистых, сернистых и металлосодержащих производных. Битумы не растворимы в воде, полностью или частично растворимы в бензоле, хлороформе, сероуглероде и др. органических растворителях; плотностью 0,95—1,50 г/см³.

Дёготь — жидкий продукт сухой перегонки древесины, а также твёрдого топлива — каменных и бурых углей, сланцев, торфа.

4. Физико-химические свойства полимеров.

Химические свойства полимеров зависят от их состава, молекулярной массы и структуры, вследствие наличия двойных связей и функциональных групп. Отдельные макромолекулы могут ²сшиваться² поперечными связями. Это процесс вулканизации и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры.

Полиеры могут подвергаться деструкции, т.е. разрушению под действием кислорода, света, теплоты, радиации. В результате деструкции уменьшается молекулярная масса макромолекул, изменяются физические и химические свойства полимеров и он становится непригодным для дальнейшего применения, Этот процесс называется старением полимеров. Чтобы замедлить этот процесс вводят стабилизаторы, чаще всего антиоксиданты.

Механические свойства полимеров определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул.

С ростом молекулярной массы механическая прочность возрастает, а также при переходе от линейных к разветвленным и далее к сетчатым структурам.

Стереорегулярные структуры имеют большую прочность, чем полимеры с разупорядоченной структурой. Самая высокая прочность у полимеров наблюдается в кристаллическом состоянии. Механическую прочность можно повысить добавлением наполнителей - сажи, мела, армированием стекловолокном.

Электрические свойства полимеров. Вещества делятся на диэлектрики, полупроводники и проводники.

Диэлектрики имеют очень низкую проводимость (< 10ˉ8Омˉ1×смˉ1), которая увеличивается с повышением температуры.

Внешнее электрическое поле поляризует диэлектрики, т.е. определенно ориентирует молекулы. Внутри возникает собственное электрическое поле, которое ослабляет воздействие внешнего поля. Характеризуется это диэлектрической проницаемостью. При высоком напряжении внешнего электрического поля диэлектрик теряет свои электроизоляционные свойства. Это напряжение называется напряжением пробоя, а отношение напряжение пробоя к толщине диэлектрика - электрической прочностью.

Большинство полимеров относится к диэлектрикам и определяются эти свойства наличием полярных групп в макромолекулах (Clˉ, OHˉ, COOHˉ, и т.п.) - они ухудшают их диэлектрические свойства. Полимеры, не имеющие этих групп: фторопласт, полиэтилен - хорошие диэлектрики. Увеличение молекулярной массы улучшает диэлектрические свойства. При переходе от стеклообразного к высокоэластичному и вязкотекучему состояниям удельная электрическая проводимость возрастает. Для улучшения диэлектрических свойств необходимо удалять из полимеров ионы и примеси. OHˉ обуславливает гидрофильность полимеров. Они поглощают воду. В результате чего увеличивается электропроводность. OHˉ необходимо связывать между собой или с другими группами.

Диэлектрики применяются в электротехнике и радиотехнике как материалы различных электротехнических изделий, защитных покрытий кабелей, проводов, изоляционных эмалей ионы и лаков.

Некоторые полимеры обладают полупроводниковыми свойствами (проводимость 10ˉ10- 10ˉ4 Ом–1.см–1), это полимеры с сопряженными двойными связями, у них есть делокализованные p - электроны. К ним относят полиацетилен (-CH = CH -)n, поливинилен и др.

 

5. Пластические массы и полимербетоны, заполненные полимеры, наполнители, добавки к бетонам.

Пластмассы (пластические массы) или пластики — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры).

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние.

Полимербетон (пластбетон, пластоцемент) — общее название бетонов, содержащих в своём составе термореактивное органическое связующее (обычно эпоксидную смолу) и большое количество дисперсного наполнителя (талька, аэросила, толчёного кварца, гранитной крошки и др.). Состав может называться пластоцементом если количество наполнителя более 50 %.

По сравнению с цементными бетонами, полимерные и полимерцементные бетоны обладают большей прочностью на растяжение, меньшей хрупкостью, лучшей деформируемостью. У них более высокие водонепроницаемость, морозостойкость, сопротивление истиранию, стойкость к действию агрессивных жидкостей и газов.

 

6. Полимерные покрытия и клеи.

Акрил как полимерное покрытие - это не что иное, как лакокрасочный слой. Загвоздка в том, что это покрытие считается самым нестойким, ненадежным и непрочным. Его очень легко повредить при монтаже кровли. Вообще он выцветает на солнце (примерно за 5 лет), начинает уже через 2-3 года отшелушиваться из-за коррозии. Так что акриловое покрытие теряет <товарный вид> очень быстро и посему уже давно не используется западными строительными компаниями. В продаже встречаются лишь отечественные материалы с таким покрытием, однако, их рекомендуется использовать только для временных сооружений.

Вот полиэстер - более надежное и более серьезное во всех отношениях покрытие.

Это один из наиболее распространенных полимеров на рынке полимерных покрытий для стального оцинкованного листа. Полиэстер считается относительно недорогим материалом, подходящим для любых климатических поясов. Он стоек к механическим и атмосферным воздействиям (более устойчив к механическим воздействиям полиэстер с посыпкой кварцевым песком, однако, он существенно дороже). К тому же при транспортировке полиэстера с посыпкой кварцевого песка возникает ряд проблем, связанных с возможностью повреждения нижнего слоя металлических листов (кварцевый песок, подобно наждачной бумаге, царапает соприкасающиеся с ним поверхности вышележащих листов).

Полиэстер обладает высокой цветостойкостью и пластичностью. Теплостойкость порядка +120 0С. Покрытие из полиэстера может быть глянцевым и матовым (модифицированным тефлоном).

Использование полиэстера для покрытия оцинкованного стального листа является разумным и экономически выгодным выбором, когда здание не находится в условиях особо загрязненной окружающей среды, а эксплуатационная нагрузка не слишком высока.

PVF2 - это материал, состоящий на 80% из поливинилфторида и на 20% из акрила. Такое полимерное покрытие отличается особенной прочностью - оно выдерживает мороз до -60 0С и не теряет своих свойств при температуре до +120 0С. Наиболее устойчив к ультрафиолетовому излучению, практически не выцветает, имеет красивый блеск. По сравнению с другими покрытиями является наиболее дорогостоящим, обладает высокой стойкостью к агрессивным средам и к механическому повреждению. PVF2 имеет чрезвычайно богатую цветовую палитру: он существует и в глянцевом, и в матовом виде, а также с металлическим оттенком в серебристых или медных тонах. Для придания металлического блеска стандартное покрытие PVF2 дополняется слоем прозрачного лака с пигментом <металлик>.

Наиболее целесообразно применять PVF2 в условиях агрессивных сред, таких как морское побережье, промышленные здания химической промышленности и т.п.

Пластизоль - это декоративный полимер. В его состав входят поливинилхлорид и различные пластификаторы. Толщина полимерного покрытия для кровельного стального листа - 175 или 200 мкм. Изготавливаются также листы с 2-х сторонним пластизолевым покрытием по 100 мкм с каждой стороны. Такой материал, например, используют для изготовления труб и желобов.

Благодаря большой толщине пластизолевое покрытие является одним из самых устойчивых к механическим повреждениям. Однако, его из-за низкой температурной стойкости и низкой стойкости к УФ-излучениям (при нагреве прямыми солнечными лучами свыше +80 0С материал быстро стареет), не рекомендуется его использовать в южных регионах. Имея большую толщину, пластизоль обладает высокой коррозионной стойкостью, что создает дополнительную защиту в условиях загрязненной окружающей среды. Цветостойкость его существенно ниже полиэстера (покрытие через несколько лет равномерно теряет яркость цвета).

При толщине 175 мкм покрытие из пластизоля выпускается только гладким. А на покрытие толщиной 200 мкм может быть накатан штампованный рисунок, придана тисненая фактурная поверхность (при этом в местах тиснения толщина слоя покрытия значительно уменьшается).

Стальные листы с пластизолевым покрытием являются идеальным материалом для изготовления фальцевых кровель, поскольку высокая пластичность и большая толщина покрытия предохраняет листы при механическом воздействии.

Пурал - относительно новый тип полимерного покрытия. Использовать его стали сравнительно недавно. Он делается на полиуретановой основе, модифицированной полиамидом. Чем хорош пурал? Он имеет хорошую химическую устойчивость, выдерживает солнечное излучение, высокие температуры и большие суточные температурные перепады. Минимальная температура при работе с листами, покрытыми пуралом, -15 0С, максимальная +120 0С. Толщина покрытия составляет 50 мкм. Это покрытие подходит для профилированных листов, поскольку легко обрабатывается, как при профилировании, так и при монтаже. Его пластичность гарантируется даже при низких температурах. Пурал имеет шелковисто-матовую структурную поверхность.

 

7. Способы переработки пластических масс и получение элементов строительных конструкций.

 

Процесс их образования зависит от разных факторов – отсюда широкие возможности варьирования и комбинирования, а следовательно и неисчерпаемые возможности получения продуктов с самыми разнообразными свойствами. Основные процессы образования макромолекул – это полимеризация, ступенчатая полимеризация (полиприсоединение) и поликонденсация.

Полимеризация – это химическая реакция образования высокомолекулярных продуктов вследствие сцепления простых ненасыщенных органических мономеров, протекающая без отщепления каких либо частей молекул. Пример: n·этилен à полиэтилен.

Полиприсоединение – это объединение различных основных молекул в высокомолекулярные продукты без отщепления третьего вещества. Пример: x·диизоцианат (OCN(R)nNCO) + y·многоатомный спирт à полиуретан.

Поликонденсация – реакция образования высокомолекулярного вещества из мономеров различного вида, которая сопровождается отщеплением низкомолекулярного продукта (часто молекул воды). Пример: x·формальдегид + y·мочевина ((NH2)2CO) à мочевиноформальдегидная смола + z·вода.

Физические и химические свойства полимеров обусловлены как особенностями химического состава и молекулярного строения этих веществ, так и их «надмолекулярной» структурой. Так химическая стойкость полиэтилена (устойчивость к действию агрессивных сред) определяется химической формулой мономера (–CH2–CH2 –), не содержащего после полимеризации двойных связей, а физические свойства, например эластичность и непроницаемость,– его надмолекулярной структурой.

Рассмотрим первый аспект проблемы – химический состав и молекулярное строение полимеров.

В соответствие с местом в периодической системе углерод четырехвалентен. Главной его особенностью является способность образовывать вещества, в которых атомы углерода связаны между собой. При этом могут возникать как цепочные (в виде простых или разветвленных цепей), так и циклические

       

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: