Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении.

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Q обр = Cp dT.

(4.9)

Если теплоемкость не зависит от температуры в интервале от T 1 до T 2, то уравнение (4.8) можно проинтегрировать:

. (4.10)

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) Cp надо заменить на C V.

2) Изотермическое расширение или сжатие.

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT / V)

(4.12)

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Q обр = nRT ln(V 2/ V 1) .

3) Фазовые переходы.

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

(4.13)

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п., поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении.

Если n 1 молей одного газа, занимающего объем V 1, смешиваются с n 2 молями другого газа, занимающего объем V 2, то общий объем будет равен V 1 + V 2, причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

, (4.14)

где xi - мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln xi < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса.

Абсолютная энтропия

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики):

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

(x = p, V). (4.15)

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста.

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости Cp от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

(4.16)

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

. (4.17)

Билет 14.

Закон Гесса. Термохимические расчеты. Энергия Гиббса. Критерий направления химической реакции.
ГЕССА ЗАКОН: тепловой эффект хим. р-ции зависит только от начального и конечного состояний системы и не зависит от ее промежут. состояний. Гесса закон является выражением закона сохранения энергии для систем, в к-рых происходят хим. р-ции, и следствием первого начала термодинамики, однако был сформулирован ранее первого начала. Справедлив для р-ций, протекающих при постоянном объеме или при постоянном давлении; для первых тепловой эффект равен изменению внутр. энергии системы вследствие хим. р-ции, для вторых-изменению энтальпии. Для вычисления тепловых эффектов р-ций, в т.ч. практически неосуществимых, составляют систему термохим. ур-ний, к-рые представляют собой ур-ния р-ций, записанные совместно с соответствующими тепловыми эффектами при данной т-ре. При этом важно указывать агрегатное состояние реагирующих в-в, т.к. от этого зависит величина теплового эффекта р-ции.

Систему термохим. ур-ний можно решать, оперируя ф-лами в-в, находящихся в идентичных состояниях, как обычными членами мат. ур-ний. Так, расчет стандартной теплоты образования СО при 298,15 К сводится к решению след, системы:

С (графит) + О2(газ) = СО2(газ) - 393,51 кДж/моль (1) СО (газ) + V2O2(raз) = СО2(газ) - 282,98 кДж/моль (2)

Вычитая ур-ние (2) из ур-ния (1), получаем: С (графит) + 1/2О2(гaз) = СО (газ) - 110,53 кДж/моль. Гесса закон-основной закон термохимии; с его помощью можно вычислить тепловой эффект р-ции без непосредств. измерения калориметрич. Методами


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: