Сл Погрешности и их источники

Потенциальная возможность возникновения погрешностей заложена как в самом принципе измерения Sp02 и частоты пульса, так и в его технической реализации.

Специальные исследования, выполненные за рубежом, показали, что пульсоксиметры являются источником более чем половины всех тревожных звуковых сигналов, раздающихся в стандартно оборудованных отделениях интенсивной терапии. При этом в 95 % случаев причиной активации аларма пульсоксиметра служит не реальная опасность, а артефакты(показания монитора, которые обусловлены не истинными значениями параметров, а действием посторонних факторов) или неправильная настройка аларм-системы. Приблизительно в 60 % случаев персонал отключает ее, не пытаясь разобраться в том, почему произошло срабатывание.

Наибольшая склонность к отображению артефактной информации отмечается у простейших моделей пульсоксиметров, не имеющих специальных систем защиты от помех. Лишь в последние годы появились эффективные программы анализа сигнала, способные не только распознавать артефакты, но также выделять и отображать на дисплее достоверную информацию даже в крайне неблагоприятных условиях работы. Но давайте посмотрим правде в глаза и признаем, что больше распространены мониторы, реагирующие на артефакты не менее бурно, чем на реальную опасность.

Погрешности, связанные с освещением. При взгляде на светодиоды датчика может создаться впечатление, что они излучают непрерывный поток света. На самом деле это не так: фотодиоды по очереди мигают с высокой частотой, измеряемой сотнями герц. Согласно требованиям Международной организации стандартов (ISO) частота засветки должна быть кратной частоте электросети, чтобы мерцание электрических ламп не влияло на процесс измерения.

Каждый цикл датчика состоит из трех фаз. Сначала на тысячные доли секунды включается красный светодиод, и фотодетектор измеряет падающий на него поток красного света, а также окружающий свет, проникающий в датчик извне. Затем то же самое проделывает инфракрасный светодиод, после чего оба диода гаснут. В этот момент фотодетектор измеряет фон - окружающий свет, достигающий фотодетектора,- который исключается программой из расчета SpO2. Поэтому датчики многих пульсоксиметров можно помещать на освещенные места без ущерба для результата. (Оценить погрешности своего оборудования можно, сравнив показания пульсоксиметра при освещенном и закрытом от света датчике.)

Погрешности, вызванные посторонним электромагнитным излучением, в океане которого работает монитор. У фотодетектора датчика электрический сигнал очень слабый, особенно в условиях нарушенной перфузии тканей, и наводка от работающей рядом электрохирургической аппаратуры может быть видна на фотоплетизмограмме. Это сильно влияет на точность измерения. К сожалению, большинство моделей пульсоксиметров при появлении наводки отображают на дисплее неправильную величину сатурации, особенно при плохом периферическом кровотоке.

Погрешность, вызванная электронаводкой: датчик и его кабель должны находиться как можно дальше от кабелей электроинструмента.

Погрешности, порожденные низкой амплитудой ФПГ. Способность пульсоксиметра выделять полезный сигнал для расчета SpO2 зависит от объема пульсаций, то есть от амплитуды фотоплетизмограммы. При ослаблении периферического кровотока монитор вынужден прибегать к значительному усилению электрического сигнала, но при этом неизбежно нарастает и фоновый шум фотодетектора. При критическом снижении амплитуды ФПГ соотношение сигнал/шум становится настолько низким, что сказывается на точности расчета SpO-г. Пульсоксиметры разных фирм ведут себя в этой ситуации неодинаково. "Честные" модели либо прекращают индикацию SpO2, либо предупреждают на дисплее, что не ручаются за точность данных. Остальные же не моргнув глазом показывают величину, рассчитанную зачастую не из сигнала, а из шума.

Погрешность, обусловленная концентрацией гемоглобина в крови. При глубокой анемии, сочетающейся с расстройствами периферического кровотока, точность измерения Sp02 уменьшается на несколько процентов. Причина снижения точности очевидна: именно гемоглобин является носителем исходной информации для пульсоксиметра.

Хороший пульсоксиметр продолжает давать надежную информацию и в тех ситуациях, когда она поистине на вес золота: при лечении больных с критическими нарушениями кровообращения.

Существует простой способ проверки монитора. Зафиксируйте датчик на своем пальце, положите руку на стол и включите пульсоксиметр. На дисплее высветятся значения SрО2 и частоты пульса, измеренные в идеальных условиях. Запомните их, встаньте и поднимите руку с датчиком вверх. В результате кровенаполнение тканей пальца и амплитуда пульсаций резко уменьшатся. Пульсоксиметру потребуется несколько секунд для того, чтобы подобрать интенсивность свечения фотодиодов и новый коэффициент усиления сигнала и заново рассчитать сатурацию и частоту пульса. Данные параметры не должны отличаться от исходных: поднятие руки никак не влияет на оксигенацию крови в легких. Если пульсоксиметр показывает другие значения или вообще прекращает работать, значит, он непригоден для мониторинга больных с тяжелыми расстройствами кровообращения.

Погрешности, вызванные движением больного. Самая частая причина ошибок пульсоксиметра - движения больного. Их обнаружение и коррекция - задача достаточно сложная. Дело в том, что при движениях пациента на ФПГ образуются дополнительные волны, обусловленные не пульсацией артериальной крови, а изменением расстояния и оптической плотности структур между светодиодами и фотодетектором. С такой проблемой чаще приходится сталкиваться в палатах интенсивной терапии и при транспортировке больного, нежели в операционной. Погрешности вследствие движения больного, обычно кратковременны, но могут наблюдаться часто. Если на дисплее монитора отражается фотоплетизмограмма, то по неправильной форме кривой нетрудно обнаружить влияние движений пациента на измерение.

Слайда нет! Распознавание погрешностей.

В программном обеспечении некоторых моделей заложено "умение" распознавать погрешности, порожденные движениями больного и прочими причинами, по нетипичному поведению ФПГ или резким колебаниям SpO2, нехарактерным для физиологических изменений. Например, снижение SpO2 за 3 секунды с 94 до 60 % программа монитора всегда расценивает как артефакт, подает соответствующее сообщение на дисплей и "замораживает" последние истинные показатели.

Другой способ - сравнение ФПГ и ЭКГ. О движениях пациента свидетельствует несоответствие волн ФПГ зубцам R на ЭКГ. Недостаток метода состоит в том, что только ради борьбы с погрешностями приходится подключать к больному электрокардиомонитор. Тем самым пульсоксиметрия лишается одного из основных своих преимуществ - предельной простоты процедуры. Правда, при отсутствии необходимости или желания встроенный модуль ЭКГ можно и не включать, постаравшись забыть о затратах на его приобретение. Кроме того, при мышечной дрожи добавление ЭКГ может быть бесполезным.

С тех пор, как кривую ЭКГ стали выводить на экран, мониторинг стал комплексным и более дешевым, поскольку теперь покупатели любовались электрокардиограммой, не платя за дополнительные блок питания, дисплей и корпус. И наконец, история получила завершение, когда на дисплей была выведена частота сердечных сокращений, рассчитанную по ЭКГ, в результате чего появилась возможность не терять этот показатель при движениях больного или критическом снижении амплитуды ФПГ, а также мониторировать дефицит пульса при мерцательной аритмии.

При использовании простейших моделей пульсоксиметров проблема артефактов, вызванных движением, остается нерешенной, в связи с чем ориентироваться на их показания можно только при неподвижном датчике.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: