Общие сведения о теплоснабжении

 

Теплоснабжение — снабжение жилых домов, общест­венно-коммунальных зданий и промышленных предпри­ятий теплоносителем: горячей водой (до 85—95°С), пе­регретой водой (до 150—200° С) и водяным паром для целей отопления, горячего водоснабжения, вентиляции и для технологических процессов.

Теплоснабжение зданий различного назначения осу­ществляется по тепловым сетям. Тепловые сети соеди­няют источник тепловой энергии с ее потребителями жилыми, общественными и производственными здани­ями.

В зависимости от вида теплоносителя тепловые сети, делятся на водяные и паровые. В водяных сетях тепло­носитель (вода) циркулирует по трубопроводам между источником тепла местом приготов­ления горячей воды и потребителями, отдав часть свое­го тепла, теплоноситель возвращается к источнику тепла. В паровых сетях теплоноситель (пар) направляется от источников тепла по паропроводу к потребителям, затем, отдав часть своего тепла, в виде конденсата по конденсатопроводу возвращается к источнику тепла.

После подогрева охлажденной воды в котлах источ­ника тепла или преобразования конденсата в пар теп­лоноситель вновь подается к потребителям, а затем вновь возвращается к источнику тепла. Цикл повторяется.

Источником тепла служат местные котельные, кото­рые обслуживают одно или несколько строений, центра­лизованные (групповые) районные или квартальные котельные, обслуживающие строения района или квар­тала города, и теплоэлектроцентрали (ТЭЦ), вырабаты­вающее комбинированно тепловую и электрическую энергии. ТЭЦ обслуживают весь город, населенный пункт или значительную часть районов больших городов. Снаб­жение потребителей от ТЭЦ называется теплофикацией.

По характеру потребителей тепловые сети подразде­ляются на промышленные, коммунальные и смешанные.

Водяные сети делятся на однотрубные, двухтрубные и многотрубные. Как правило, водяные тепловые сети строят двухтрубными.

По конфигурации тепловые сети бывают тупиковые и кольцевые.

Системы тепловых сетей могут быть открытыми, если производится непосредственный водоразбор из тепло­проводов, и закрытыми, если непосредственного водоразбора из тепловых сетей нет, и, таким образом, в сетях циркулирует постоянное количество воды.

В зависимости от длины и диаметра трубопроводов, а также количества передаваемой по ним тепловой энер­гии тепловые сети подразделяются на:

магистральные — от источника тепла до микрорай­она (квартала) или до предприятия;

распределительные — от магистральных сетей до сетей к отдельным зданиям, при расположении распре­делительных сетей внутри квартала эти сети называются внутриквартальными или разводящими сетями;

сети к отдельным зданиям — ответвления от рас­пределительных или магистральных сетей до узлов при­соединения местных систем потребителей тепла или до индивидуальных тепловых пунктов зданий; эти ответвления называют также вводами.

 

1. Системы теплоснабжения производственных предприятий

2. Виды тепловых нагрузок

3. Классификация систем теплоснабжения

-по схеме подачи тепла потребителю (децентрализованные и централизованные);

-по виду теплоносителя (паровые системы и водяные системы);

-по способу отпуска теплоты потребителю;(для отопления: зависимые и независимые; для горячего теплоснабжения: закрытые и открытые)

-по числу параллельно идущих теплопроводов;

-по числу ступеней присоединения.

4. Схемы тепловых сетей (Тупиковая, Радиальная, Кольцевая)

5. Паровые системы теплоснабжения (ПСТ).

6. Оборудование тепловых сетей

 

Системы теплоснабжения предприятий (СТСПП) - это комплекс устройств по выработке, транспортированию и обеспечению потребителей необходимым количеством теплоты требуемых параметров.

Система теплоснабжения (рис. 1) включает в себя:

1. Источник (ТЭЦ, котельная);

2. Магистральные сети (тепловые);

3. Распределительные сети (тепловые);

4. Потребители тепла (промышленные потребители,

жилые и общественные объекты ЖКХ);

5. Абонентский ввод (тепловой узел, местный тепловой пункт МТП, элеваторный узел);

6. Центральный тепловой пункт ЦТП.

Рис.1. Система теплоснабжения.

Виды тепловых нагрузок:

· Потребление тепловых нагрузок:

1- отопление (нагрузка на отопление);

2- вентиляцию (тепло в калорифере (теплообменнике);

3- горячее водоснабжение;

4- технологические нужды п.п.

· Тепловые нагрузки различают:

1- сезонные (отопление, вентиляция);

2- круглогодичные (горячее водоснабжение, технологические нужды).

Классификация систем теплоснабжения:

1- по схеме подачи тепла потребителю;

2- по виду теплоносителя;

3- по способу отпуска теплоты потребителю;

4- по числу параллельно идущих теплопроводов;

5- по числу ступеней присоединения.

1. По схеме подачи тепла потребителю:

- децентрализованные – источник тепла на месте потребления. В этом случае отсутствуют тепловые сети; применяются в районах с малой концентрацией тепловой нагрузки, когда небольшие здания расположены на неплотно застраиваемых участках, а также при технико-экономических обоснованиях.

- централизованные – источник теплоснабжения (ТЭЦ или котельная) располагаются на значительном расстоянии от потребителей теплоты. Поэтому каждая СТС состоит из трех звеньев (источник теплоты – тепловые сети – местные системы теплоснабжения). Местные СТС – тепловые подстанции и теплоприемники.

Централизованные системы отопления имеют преимущества перед децентрализованными, и в настоящее время ЦCТ определяют ведущую роль в развитии теплоснабжения крупных городов и промышленных предприятий. В г. Петрозаводске ТЭЦ введена в строй в 1977 году.

2. По виду теплоносителя:

- паровые системы (теплоноситель – водяной пар);

- водяные системы (теплоноситель – горячая вода).

Горячая вода используется для удовлетворения нагрузок на отопление, вентиляцию и горячее водоснабжение. Водяной пар используется на предприятиях для технологических нужд (редко используют перегретую воду). При требуемой температуре теплоносителя у потребителя до 150˚С используют горячую воду, а при более высоких параметрах – водяной пар. К теплоносителям предъявляют специальные требования:

а. санитарно – гигиенические (в помещениях ЖКС температура нагреваемых приборов не допускается выше 90˚С, в промышленных цехах она может быть и выше);

б. технико – экономические (стоимость материала, монтажа и эксплуатации должна быть оптимальной);

в. эксплуатационные (теплоноситель должен обладать качествами, которые позволяли бы производить централизованную регулировку теплоотдачи систем потребления).

Сравнительная характеристика воды и пара как теплоносителя:

Преимущества воды: диапазон изменения температур в широких пределах (от 25˚до 150˚С); возможность транспортирования на большие расстояния без уменьшения ее теплового потенциала (15-20 км); возможность централизованного регулирования температуры теплоносителя на источнике; простота присоединения местных систем к тепловым сетям.

Недостатки воды: требуется значительный расход электроэнергии на работу насосов по перекачке тепла; температура теплоносителя может быть меньше заданной.

Преимущества пара: применяют как для тепловых потребителей, так и для силовых и технологических нужд; быстрый прогрев и остывание системы, что ценно для помещений, где периодически требуется отопление; в паровых системах можно не учитывать гидростатическое давление по причине низкой объемной массы (в 1650 раз меньше объема воды). Паровые системы могут применяться в гористой местности и в многоэтажных зданиях; отсутствие расхода электроэнергии на транспортировку пара (без насосов); простота начальной регулировки вследствие саморегулировки пара.

Недостатки пара: при транспортировке на значительные расстояния имеют место большие потери температуры и давления, поэтому радиус паровых систем всего 6-15 км, а водяных – от 30 до 60 км. Срок службы паровых систем значительно ниже, чем водяных из-за коррозии труб.

3. По способу отпуска теплоты потребителю:

- для отопления – схемы подключения ТС: зависимые и независимые;

- для горячего теплоснабжения – схемы подключения ТС: закрытые и открытые.

Зависимая схема подключения – когда вода из теплосети непосредственно поступает в нагревательные приборы местной отопительной системы (МОС).

Независимая схема подключения – когда имеется два раздельных контура (первичный – вода, циркулирующая в тепловой сети, и вторичный – собственный контур дома, вода, циркулирующая в МОС), при этом, вода из теплосети через теплообменник отдает тепло воде собственного контура. Вода из ТС доходит только до тепловой подстанции МОС (тепловая подстанция – это ЦТП или МТП), где в подогревателях (теплообменниках ТА) нагревают воду, которая циркулирует в МОС. В этом случае имеет место два теплоносителя: греющий (вода из ТС) и нагреваемый (вода в МОС). Давление первичного контура никак не передается на давление вторичного, который работает за счет собственного циркуляционного насоса.

Открытый водоразбор – напрямую из тепловой сети. Закрытый водоразбор – через теплообменник вода из ТС нагревает воду питьевого водопровода.

Оборудование тепловой подстанции при зависимой схеме проще и дешевле, чем при независимой, однако, необходимо учитывать, что в зависимых схемах давление передается из тепловой сети в МОС, которая выдерживает давление до 6-10 атм. в зависимости от типа нагревательных приборов. Пример: чугунные радиаторы выдерживают 6 атм.

Схемы присоединения систем отопления к тепловым сетям:

· Зависимая схема без смешения (рис.2).

 

Т1 – подающий теплопровод ТС,

-1 -1 Т2 – обратный трубопровод ТС,

1 – арматура отключающего устройства.

 

 

Рис. 2. Зависимая схема без смешения

Температура в подающем трубопроводе ТС не превышает предела, установленного санитарными нормами для приборов местных систем. Это возможно в случае малого источника тепла, когда котельная вырабатывает теплоноситель параметрами 95˚-70˚С или в системе отопления промышленных зданий t ≥ 100˚ С, но она допустима.

· Зависимая схема с элеваторным смешением (рис. 3).

→ 130˚С → 90-95˚С

 

70˚С ↑

 

Рис. 3. Зависимая схема с элеваторным смешением Рис. 4. Элеватор

Вода из подающего трубопровода Т1 с t = 130˚C поступает в элеватор (рис. 4), через патрубок к элеватору подсасывается вода из обратной местной сети Т2 t =70˚C. Благодаря соплу, которое встроено в элеватор, и по принципу инжекции, происходит смешение t= 130˚C и t=70˚C, смешанная вода t = 90˚С поступает в нагревательные приборы. Элеваторы рассчитываются, и подбирается диаметр сопла. У нас в стране большинство вводов в здания снабжено элеваторами там, где по теплосетям транспортируют перегретую воду. Необходимо учитывать, что для работы элеватора требуется напор на воде 15 м водного столба.

· Зависимая схема с насосным смешением (рис. 5).

В случае недостаточного напора ставят

центробежный насос на перемычке между

90˚С↑ 70˚С ↓ подающим и обратным трубопроводом и он

← как элеватор подмешивает к подающей воде

обратную охлажденную воду. Но насос

дорогостоящее оборудование.

130˚С ↑ Существует схема и с элеватором и с насосом.

 

 

Рис. 5. Зависимая схема с насосным смешением

 

· Независимая схема (с теплообменником) (рис.6).

Независимая схема делит МОС на два контура, не допуская колебаний давлений. Оба контура гидравлически изолированы и независимы друг от друга. В данной схеме легко учитывать потребность в тепле, регулировать подачу тепла, т.е. устранять проблему перетопа, а, следовательно, экономить.

1. Местная отопительная система;

2. Циркуляционный насос;

→ 3. Теплообменник;

4. Расширенный бак;

5. Отключающая арматура.

↑ ↓

 

Рис. 6. Независимая схема (с теплообменником)

Схемы подключения ГВС к тепловым сетям.

· В закрытых системах теплоснабжения теплоноситель полностью возвращается к

источнику теплоснабжения (за исключением утечек). Теплоноситель используют как греющую среду в теплообменных аппаратах. Закрытые системы гидравлически изолированы от тепловых сетей, что обеспечивает стабильное качество воды в ГВС, т.к. нет выноса шлаковых отложений в систему ГВС (это плюс). Однако, в систему ГВС (в трубы) поступает вода из холодного водопровода, который не подвергается деаэрации (удалению кислорода и углекислого газа), нагревается и усугубляет коррозионную активность, следовательно, быстрее происходит разрушение труб от коррозии, чем в открытых схемах. Поэтому в закрытых системах рекомендуют применять неметаллические, пластиковые трубы.

Закрытые схемы различают одноступенчатые и многоступенчатые. Выбор схемы зависит от соотношения расхода тепла на отопление и ГВС. Выбор схемы присоединения производится на основании расчета.

· В открытых системах ГВС используют не только теплоту, подводимую

теплоносителем из тепловой сети в местную сеть, но и сам теплоноситель. В открытых схемах трубы ГВС коррозируют в меньшей степени, чем в закрытых системах, т.к. вода поступает из тепловой сети после химводочистки (ХВО), но при этом возможно нарушение стабильности санитарных норм показателей воды. Открытые схемы дешевле. Чем закрытые, т.к. не требуются затраты на теплообменники и насосное оборудование.

Схемы присоединения систем горячего водоснабжения зданий к тепловым сетям.

· Одноступенчатые схемы (рис. 7, 8):

 

 

 

Один теплообменник и нагрев на ГВС происходит перед МОС).

 

 

Рис. 7. Одноступенчатая предвключенная

 

 

Рис. 8. Одноступенчатая параллельная

 

· Многоступенчатые схемы (рис. 9, 10):

 

 

Т = 55-60˚С

Т = 30˚С Т = 5˚С

 

 

 

Рис. 9. Последовательная двухступенчатая

 

 

→ →

 

← ←

 

 

Рис. 10. Смешанная двухступенчатая

 

Двухступенчатые схемы эффективны в применении тем, что происходит глубокое снижение температуры обратной воды, а также имеет место независимый расход тепла на отопление и ГВС, т.е. колебание расхода в системе ГВС не отражается на работе МОС, что может происходить в открытых схемах.

4. По числу параллельно идущих теплопроводов.

В зависимости от числа труб, передающих теплоноситель в одном направлении различают одно-, двух- и многотрубные системы ТС. По минимальному числу труб может быть:

- открытая однотрубная система – применяется при централизованном отоплении на технологические и бытовые нужды, когда вся сетевая вода разбирается потребителями при подаче теплоты на отопление, вентиляцию и ГВС, т.е. когда Qот + Qвент. =Qгвс. Такие ситуации характерны для южных районов и технологических потребителей (редко встречаются).

- двухтрубная система – самая распространенная, состоит из подающего (Т1) и обратного (Т2) трубопроводов.

- трехтрубная – состоит из соединения двухтрубной системы водоснабжения на отопление и вентиляцию и третьей трубы для целей ГВС, что не очень удобно.

- четырехтрубная – когда добавляется циркуляционный трубопровод на ГВС.

Условные обозначения трубопроводов в соответствии с ГОСТом:

1. подающий трубопровод (Т1),

2. обратный трубопровод (Т2),

3. трубопровод ГВС (Т3),

4. циркуляционный трубопровод ГВС (Т4),

5. трубопровод технологических нужд (Тт).

5. По числу ступеней присоединения.

Различают одноступенчатые и многоступенчатые схемы систем теплоснабжения.

Одноступенчатая схема (рис. 11) – когда потребители теплоты присоединяются к тепловым сетям при помощи МТП.

Рис. 11. Одноступенчатая схема

 

1- потребители тепла,

2- местные тепловые узлы (МТП),

3- элемент промышленной котельной с паровыми и водогрейными котлами,

4- водогрейный котел (пиковый),

5- сетевой паро- водяной подогреватель,

6- перемычка с отключающей арматурой для создания различных режимов работы (для отключения водогрейного котла),

7- сетевой насос,

8- ЦТП.

 

Двухступенчатая схема (рис. 12).

 

Рис. 12. Двухступенчатая схема

 

Многоступенчатая схема – когда между источником теплоты и потребителями размещают ЦТП и групповые тепловые пункты (ГТП). Эти пункты предназначены для приготовления теплоносителей требуемых параметров, для регулирования расхода теплоты и распределения по местным системам потребителей, а также для учета и контроля расхода теплоты и воды.

 

Схемы тепловых сетей

Схемы тепловых сетей зависят от:

· Размещения источников теплоты по отношению к району потребления;

· От характера тепловой нагрузки;

· От вида теплоносителя (пар, вода).

При выборе схемы тепловых сетей исходят из условий надежности, экономичности, стремясь к получению наиболее простой конфигурации сети и наименьшей длины трубопроводов.

Тепловые сети делятся на категории:

1. Магистральные сети;

2. Распределительные сети;

3. Внутриквартальные сети;

4. Ответвления к потребителям (зданиям).

Тепловые сети проектируются по следующим схемам:

1. Тупиковая (рис. 13) – наиболее простая, имеет распространение в поселках и малых городах:

 

1-источник,

2-магистральные сети,

3-распределительные сети,

4-квартальные сети,

5-ответвления,

6- потребители,

7-перемычка.

 

Рис. 13 Тупиковая схема

2. Радиальная (рис. 14) – устраивается, когда нет возможности предусмотреть кольцевую, но перерыв в теплоснабжении недопустим:

 

Рис. 14 Радиальная схема

3. Кольцевая – наиболее дорогая, сооружается в крупных городах, обеспечивает бесперебойное теплоснабжение, для чего должен быть предусмотрен второй источник тепловой энергии:

Рис. 15 Кольцевая схема

Паровые системы теплоснабжения (ПСТ).

Паровые системы теплоснабжения применяются в основном на крупных промышленных предприятиях и могут иметь место на объектах, окружающих промышленных потребителей, а так же в городах с неблагоприятным рельефом местности.

Виды паровых систем:

1-однотрубные (рис. 16) (нет возврата конденсата в систему):

1-источник (паровой котел),

2-стена промышленного потребителя – граница абонентского ввода потребителя,

3-калорифер,

4-пароводяной теплообменник для

ГВС,

5-пароводяной теплообменник для МОС,

6-технологический агрегат,

Рис. 16 Однотрубная паровая система 7-конденсатоотводчики,

8- сброс конденсата в дренаж.

 

Рис. 17 Автоматический конденсатоотводчик.

Однотрубную схему целесообразно применять, когда по условиям технологического процесса конденсат имеет значительные загрязнения и качество этих загрязнений неэффективно для очистки. Данная схема применяется для прогрева мазута, пропарки железобетонных изделий.

2-двухтрубные (рис. 18):

1-источник (паровой котел),

2-стена промышленного

потребителя – граница

абонентского ввода потребителя,

3-калорифер,

4-пароводяной теплообменник для

ГВС,

5-пароводяной теплообменник для

МОС,

6-технологический агрегат,

7-конденсатоотводчики,

Рис. 18 Двухтрубная паровая система 8-конденсатопровод,

9-конденнсатный бак,

10-конденсатный насос.

Двухтрубные системы с возвратом конденсата применяют, если конденсат не содержит агрессивных солей и других загрязнений (т.е. он условно-чистый). Схемы прокладывают как правило, таким образом, что в конденсатный бак конденсат поступает самотеком.

3-многотрубные (рис. 19):

 

 

Рис. 19 Трёхтрубная паровая система

 

Трехтрубная (многотрубная) схема применяется, когда потребителю требуется пар различных параметров. Котельная вырабатывает пар с максимальным давлением и температурой, которые требуются одному из потребителей. Если имеются потребители, которым требуется пар с более низкими параметрами, то пар пропускают через редукционную установку (РУ), в которой пар снижает только давление или через редукционную охладительную установку (РОУ), если необходимо понизить и давление, и температуру.

Оборудование тепловых сетей

Различают следующие способы прокладки тепловых сетей:

1. Надземная (наземная) прокладка – имеет место на территории промышленных предприятий, при пересечении дорог и препятствий, в районах вечной мерзлоты;

2. Подземная прокладка бывает:

-в непроходных каналах,

-в полупроходных каналах,

-в проходных каналах (коллекторах),

-бесканальная.

Коллекторы и полупроходные каналы имеют место в крупных городах, на территории промышленных предприятий, где имеет смысл прокладывать различные инженерные сети (коммуникации) совместно. Этот способ прокладки удобен в обслуживании сетей, но дорогостоящий. Трубы тепловых сетей, прокладываемые в непроходных каналах и бесканально, не обслуживаются. Таким образом, выбор прокладки сетей зависит от условий территории, вида грунта, застройки и технико-экономического обоснования.

Глубина прокладки тепловых сетей зависит от места прокладки. Максимальная глубина в непроезжей части составляет 0,5 м до верха канала, в проезжей части – 0,7 м. Тепловые сети прокладываются с уклоном ίmin=0.002 (ίmin=h/L).

Оборудование тепловых сетей, которое требует постоянного контроля и обслуживания, устанавливается в теплофикационных камерах (рис. 20). Это: задвижки, дисковые затворы, регулирующие клапаны, устройства для выпуска воздуха и спуска воды (опорожнения сети). Как правило, совместно с камерой сооружают неподвижные опоры. Необходимо сооружать (в водонасыщенных грунтах) дренажные сети (на песчаную подготовку укладывают трубы с отверстиями сверху и по бокам и засыпают щебнем).

 

1. железобетонный лоток (канал),

2. плиты перекрытия,

3. бетонная подушка,

4. скользящая опора (высота скользящей опоры выше толщины изоляции),

5. тепловая изоляция,

6. труба.

7. дренажный трубопровод (в водонасыщенных грунтах)

Рис. 20 Теплофикационная камера

В тепловых сетях применяют электросварные или бесшовные трубы, а также возможны варианты и чугунные трубы из высокопрочного чугуна с шаровидным графитом.

Для дворовых сетей при рабочем давлении Рраб до 1,6 МПа и температурой Т до 115˚С можно применять неметаллические (пластиковые) трубы.

Опорные конструкции.

Различают: - подвижные (свободные) опоры,

- неподвижные (мертвые) опоры.

Подвижные опоры предназначены для восприятия веса трубы и обеспечения свободного перемещения труб (при температурных удлинениях). Количество подвижных опор определяется по таблицам в зависимости от диаметра и веса трубы. По принципу свободного перемещения подвижные опоры различаются на: скользящие опоры (скользячки), катковые, шариковые, подвижные.

Подвижные опоры используют во всех способах прокладки, кроме бесканальной.

Неподвижные опоры служат для восприятия температурной деформации методом закрепления трубопровода, а также для разграничения участков компенсации тепловых удлинений. Различают неподвижные опоры:

-щитовые (при подземной прокладке),

-на балке, на фундаменте, на стойках (при наземной прокладке или в тоннелях).

Компенсация тепловых удлинений.

Компенсаторы предназначены для восприятия температурных удлинений теплопровода и разгрузки труб от температурных напряжений и деформаций. В тепловых сетях применяют следующие виды компенсаторов:

 

 

1. гибкие (п-образные):

1- вылет компенсатора,

2- спинка компенсатора,

3- сварные крутоизогнутые отводы,

4- подвижные опоры,

5- стяжные болты,

устанавливаются на Рис. 21 Гибкая (П-образная) опора стяжных хомутах.

 

∆l = α∙L (τmaxmin), где α – коэффициент линейного расширения,

L – длина между неподвижными опорами (участок компенсации).

П- образные компенсаторы растягиваются на половину тепловых удлинений. Растяжку делают на первых сварных стыках от компенсатора.

П-образные компенсатора, как и углы поворота не требуют обслуживания.

2. углы поворота трассы (самокомпенсация),

3. сильфонные, линзовые (одна или много гофр),

Компенсирующая способность сильфонного компенсатора

составляет 50-150 мм.

 

 

Сильфонный трехволновый компенсатор.

 

4. сальниковые (рис. 22):

1-корпус,

2-стакан,

3-сальниковая набивка,

4-грунтбукса,

5-фланец нажимной,

6-стяжной болт.

Рис. 22 Сальниковый компенсатор

 

 

Сальниковый компенсатор может быть односторонним и двухсторонним.

Углы поворота трассы и п-образные компенсаторы работают как радиальные, а сильфонные, линзовые и сальниковые – как осевые.

Бесканальная прокладка.

Для тепловых сетей бесканальной прокладки используют трубопроводы с пенополиуретановой изоляцией (ППУ-изоляция). Россия – страна с самым высоким уровнем централизованного теплоснабжения, протяженность тепловых сетей в нашей стране составляет примерно 260 тысяч километров, а в Карелии – примерно 999 тыс. метров. Из них 50% тепловых сетей требуют капитального ремонта. Тепловые сети теряют 30% отпускного тепла, что составляет примерно 80 млн. тут/год. Для решения этих проблем предлагается бесканальная прокладка с ППУ-изоляцией. Преимущества данной прокладки:

- повышение долговечности с 10 до 30 лет,

- снижение теплопотерь с 30% до 3%,

- снижение эксплуатационных расходов в 9 раз,

- снижение расходов на ремонт теплотрасс в 3 раза,

- снижение сроков строительства,

- наличие системы оперативно-дистанционного контроля (ОДК) за увлажнением изоляционного слоя.

Статистика накопленных дефектов:

38% -повреждение сторонними лицами системы ОДК,

32%-повреждение стальных оболочек,

14%- повреждение стыковых соединений,

8%-ошибки сборки ОДК,

2%-некачественная сварка,

6%-внутренняя коррозия металла.

При бесканальной прокладке используют полиэтиленовую оболочку.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: