Уравнения колебаний и их решения для пружинного, физического и математического маятника

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так: , где f(x) — это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания, пропорционального скорости колебаний с коэффициентом c:

Математи́ческийма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, подвешенной на невесомой нерастяжимой нити или на невесомом стержне в поле тяжести. Период малых колебаний математического маятника длины l в поле тяжести с ускорением свободного падения g приближенно равен

и мало зависит от амплитуды и массы маятника.

Уравнение колебаний маятника

Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида , где ω ― положительная константа, определяемая исключительно из параметров маятника. Неизвестная функция x(t) ― это угол отклонения маятника в момент t от нижнего положения равновесия, выраженный в радианах;

, где l ― длина подвеса, g ― ускорение свободного падения. Уравнение малых колебаний маятника около нижнего положения равновесия (т. н. гармоническое уравнение) имеет вид:

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Определения

— угол отклонения маятника от равновесия; — начальный угол отклонения маятника; — масса маятника; — расстояние от точки подвеса до центра тяжести маятника; — радиус инерции относительно оси, проходящей через центр тяжести. — ускорение свободного падения.

Момент инерции относительно оси, проходящей через точку подвеса: .

Дифференциальное уравнение движения физического маятника

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом: . Полагая  , предыдущее уравнение можно переписать в виде: . Последнее уравнение аналогично уравнению колебаний математического маятника длиной . Величина  называется приведённой длиной физического маятника. Период малых колебаний физического маятника

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: