Модель с конечной интенсивностью поступления заказа

 

I
 

Пусть заказанная партия поступает с интенсивностью u единиц в единицу времени. Очевидно система может работать без дефицита, если интенсивность поставок u превосходит интенсивность потребления v. Таким образом рассматривается система типа заводского склада, куда продукция, произведенная одним цехом, поступает с определенной интенсивностью и используется в производстве другого цеха. Изменение уровня запаса для рассматриваемого случая изображено на рис. 2.2. В течение времени r1 запас одновременно и поступает и расходуется, это время накопления запаса. В течение r2 запас только расходуется. Длина цикла r = r1 + r2 . Учитывая, что максимальный наличный запас Iм = q(1-v/u) издержки системы в единицу времени составят

         
0
   
Рис. 2.2

 

 


(2.3)
Оптимальные параметры работы системы определяются обычным образом. Величины оптимальной партии

 

(2.4)
 

оптимальный период возобновления заказа

 

 

и его составляющие

 

минимальные издержки в единицу времени

 

(2.5)
 


В случае, когда интенсивность поставки значительно больше интенсивности потребления v/u 0, а (2.3), (2.4), (2.5) становятся параметрами обычной системы Уилсона.

 


2.3.Модель с учетом неудовлетворенных требований.

 

В некоторых случаях, когда потери из-за дефицита сравнимы с издержками хранения, дефицит допускается. Пусть требования, поступающие в момент отсутствия запаса, берутся на учет. Обозначим через y максимальную величину задолженного спроса рис. 2.3. Максимальная величина наличного запаса Y = q-y расходуется за время r1 (время существования наличного запаса), а затем поступающие требования ставятся на учет в течение времени r2 (время дефицита). При поступлении очередной партии в первую очередь удовлетворяется задолженый спрос, а затем пополняется запас. Убытки, связанные с дефицитом единицы запаса в единицу времени, составляют d. Затраты на хранение продукции пропорциональны средней величине запаса (q-y)/2 и времени его существования (q-y)/v; аналогично убытки от дефицита пропорциональны средней величине дефицита y/2 и времени его существования y/v. Средние издержки работы системы в течение цикла, включающие затраты на размещение заказа, содержание запаса и потери от дефицита

     
I

 


                                                                           

     
 
Рис. 2.3

 


 

Разделим издержки цикла на его величину r = q/v и получим издержки работы системы в единицу времени

 

Откуда обычным способом находим

 

 

 

 

Подставив значения q* и y* в соответствующие выражения, найдем другие оптимальные параметры системы

 

 

В более сложных моделях управления запасами сохраняется общий подход: строится функция затрат на приобретение запаса, строится функция потерь при хранении запаса и при его нехватке, находится уравнение запасами, при котором минимизируются затраты и потери.

Возможно также решение задач управления запасами, в которых на переменные величины накладываются определенные ограничения. В качестве примера рассмотрим задачу оптимизации режима производства и хранения, которая относится к комбинированным задачам: задачам составления календарных расписаний и задачам управления запасами.

Задача выравнивания графика производства при неравномерной потребности в производимой продукции возникает на многих предприятиях. Для расчета графика производства решается следующая задача. Известна потребность в деталях определенного вида - at, где t=1,2,…, T – планируемый отрезок времени. Выпуск деталей за этот отрезок времени xt является искомой величиной. Неизвестен и запас изготовленных деталей на конец отрезка времени t-st. Известен лишь начальный запас s0 . Очевидно, что запас на начало t-го периода st-1вместе с производством за этот период xt должен быть равным потребности at, плюс запас на конец периода st, т. е. xt+ st-1- st = at.

Одним из условий задачи является равномерность составляемого графика производства. Поэтому чем меньше по абсолютной величине разница в выпуске деталей за каждые два последовательных периода (xt+1- xt), тем стабильнее график выпуска. Представим эту разность как разность двух других независимых: xt+1- xt= yt-zt. Неотрицательные переменные yt и zt показывают: yt - прирост, а zt – снижение производства при переходе от t-к (t+1)-й декаде. Целевая функция данной задачи имеет вид

 

где p – дополнительные затраты при изменении объема выпуска продукции; q – затраты, связанные с содержанием запасов.

В простейшем случае, когда неравномерность графика и увеличение запасов является одинаково нежелательными, задача заключается в минимизации

 

при соблюдении условий:

xt + st-1 - st = at;

xt+1 - xt - yt + zt = 0;

 

Рассмотрим указанную задачу на конкретном примере. (Приложение1).




















Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: