Отличительные признаки КМ

Введение

 

Большое значение в последнее время приобрели методы создания композиционных материалов (КМ) с ценным комплексом свойств.

Успехи, достигнутые в этой области, позволяют говорить о появлении нового класса конструкционных материалов, способных не только конкурировать с традиционными материалами, но и поднять на качественно новый уровень машиностроение, строительство, электронику и другие отрасли.

Быстрое увеличение производства КМ уже сегодня сопровождается заметным сокращением мощностей в металлургии во многих экономически развитых странах. По оценкам специалистов, производство КМ в 2005 году только в развитых странах достигло 3 млн. т. На КМ сегодня приходится более 15% стоимости всех используемых конструкционных материалов.

В настоящее время наибольшее распространение получили КМ на полимерной основе, причем в качестве матрицы используют все известные гомо- и гетероцепные полимеры, наполнителей – органические и неорганические соединения.

Применение гетероцепных полимеров обусловлено наличием в их цепи химически активных групп, в результате чего композиты, изготовленные на их основе, обладают высокими механическими свойствами благодаря более прочному каркасу. Однако по стоимости они существенно превосходят композиты на основе гомоцепных полимеров.

Для экономики любого производства важно использование более дешевых материалов без потери эксплуатационных или физико-химических характеристик продукта.

Целью настоящего проекта является разработка композита на основе более дешевых компонентов и технологической схемы его производства. Для получения более высоких характеристик продукта были использованы современные достижения в области модификации исходных материалов и соответствующая техника.

 

 



Аналитический обзор

 

Общее представление о композиционных материалах (КМ)

 

Понятие КМ

Композиционные материалы представляют собой многофазные системы, полученные из двух или более компонентов и обладающие новым сочетанием свойств, отличным от свойств исходных материалов, но с сохранением индивидуальности каждого компонента. [1]

композиционный материал техника прогрессивный

1.1.2 Состав КМ

Простейший композит состоит из наполнителя и полимерной матрицы.

В большинстве случаев компоненты композиции различаются по геометрическому признаку. Один из компонентов может быть непрерывным по всему объёму КМ или в объёме, существенно превышающем объём минимальных составляющих второго компонента. В этом случае непрерывный компонент называется матрицей, а наполнитель, являющийся прерывистым, разъединенным в объёме КМ, – армирующим. Смысл термина «армирующий» расширяется в этом случае и звучит, как «введенный в материал с целью изменения его свойств», а не только «упрочняющий», как его обычно понимают. Деление компонентов КМ на матричный или армирующий не имеет смысла, если оба компонента равнозначны по геометрическому признаку.

С точки зрения размерности частиц наполнителя композиционные материалы в свою очередь подразделяются на макрокомпозиционные (размеры частиц дисперсной фазы более 10-6 м.) и микрокомпозиционные (размеры частиц дисперсной фазы лежат в интервале 10-8 10-6 м.). Если в материале можно выделить одну или несколько дисперсных фаз с размером частиц не менее 10-6 м или если материал состоит из двух или более непрерывных фаз, то его следует относить к макрокомпозиционным материалам. Когда дисперсные фазы материала состоят из частиц с наибольшими размерами 10-6-10-8 м, и из одной непрерывной фазы, то он относится к микрокомпозиционным материалам. Большинство промышленных композиционных материалов относятся к макрокомпозиционным материалам, в котором одна фаза является полимерной. [1]

Гранулометрический составоценивается по дисперсности и однородности. Дисперсность характеризует размер частиц в единицах длины. Дисперсность влияет на производительность экструзионных машин. Так, при очень больших размерах частиц, когда они превышают глубину нарезки в зоне загрузки, затрудняется заполнение винтов шнека гранулами и ухудшается питание агрегата полимером. Однородность материала влияет на технологичность, точность дозирования, насыпную плотность, стабильность размеров. Чем выше однородность, тем лучше качество композита. [1]

 

Отличительные признаки КМ

В настоящее время не существует общепринятого определения КМ, считают, что материалы должны обладать следующей совокупностью признаков:

1) состав, форма и распределение компонентов материала известны заранее;

2) материал не встречается в природе, а создан человеком;

3) материал состоит из двух или более компонентов, различающихся по своему химическому составу и разделенных в материале выраженной границей (граница раздела);

4) свойства материала определяются каждым из его компонентов, которые должны присутствовать в достаточно больших количествах, то есть не в виде примеси;

5) материал обладает такими свойствами, которых не имеют его компоненты, взятые в отдельности;

6) материал является неоднородным в микромасштабе и однородным в макромасштабе.

Последний признак предполагает тот факт, что любые произвольно выбранные элементарные образцы КМ (такие образцы, все размеры которых существенно превышают минимальные размеры компонентов материала) должны иметь в среднем один и тот же химический состав. Таким образом, КМ характеризуются «повторяющейся» геометрией или равномерным распределением компонентов по отношению друг к другу.

Этот признак позволяет исключить из класса КМ биметаллы, детали с покрытиями, сотовые изделия, являющиеся скорее конструкциями, чем материалами. Этот же признак позволяет уточнить понятие элементарного образца КМ – такого минимального объёма материала, который характеризуется всем комплексом определяющих его признаков. В самом общем случае элементарный образец КМ должен иметь размеры, существенно превышающие минимальный размер компонентов. С этих позиций такие объекты, как моноволокно, окруженное достаточным количеством второго компонента, или монослой из волокон, объединенных вторым компонентом, не являются элементарными образцами КМ. Реальное механическое поведение микрообразцов в виде волокон с покрытием или монослой при различных видах нагружения существенно отличается от механического поведения элементарных или более крупных образцов КМ. Их характерной чертой является равномерное распределение нагрузки на более прочном и жестком компоненте и торможение развития разрушающей трещины на внутренних поверхностях раздела. Микрообразцы материала, представляющие собой элементарную ячейку КМ или их простую совокупность, не соответствуют пятому признаку КМ. [1]

Классификация КМ

В зависимости от вида армирующего компонента КМ могут быть разделены на две основные группы: дисперсно-упрочненные и волокнистые, которые отличаются структурой (внутренним строением) и механизмами образования высокой прочности.

Дисперсно-упрочненные КМ представляют собой материал, в матрице которого равномерно распределены мелкодисперсные частицы второго вещества. В таких материалах при нагружении всю нагрузку воспринимает матрица, в которой с помощью не растворяющихся в ней частиц второй фазы создается структура, эффективно сопротивляющаяся пластической деформации. Вязкий нехрупкий материал перед разрушением претерпевает значительную деформацию. Причем пластические деформации в реальных кристаллических материалах начинаются при напряжениях, которые меньше, чем теоретически рассчитанные для идеальных материалов примерно в 1000 раз. Такая низкая прочность по сравнению с теоретической объясняется тем, что в пластической деформации активно участвуют дислокации – локальные искажения кристаллической решетки. При деформации благодаря дислокациям сдвиг атомов в соседнее положение происходит не одновременно по всей поверхности скольжения, а растягивается во времени. Такое постепенное скольжение за счет небольших смещений атомов в области дислокаций не требует значительных напряжений, что и проявляется при испытаниях пластичных материалов. Упрочнение таких материалов заключается в создании в них структуры, затрудняющей движение дислокаций. Проблема повышения конструкционной прочности состоит не только в повышении прочностных свойств, но и в том, как при высокой прочности обеспечить высокое сопротивление вязкому разрушению, то есть повысить надежность материала. В дисперсно-упрочненных КМ заданные прочность и надежность достигаются путем формировании определенного структурного состояния, при котором эффективное торможение дислокаций сочетается с их равномерным распределением в объёме материала или с подвижностью скапливающихся у барьеров дислокаций для предотвращения хрупкого разрушения. Упрочнение дисперсными частицами позволяет достигать предела текучести уT=10-2G, где G – модуль сдвига. При нагреве до Т= (0,6–0,7)*Тпл прочность резко снижается. При нагреве до Т= (0,6–0,7)*Тпл прочность резко снижается. [2]

Армирование полимеров волокнамипозволяет получать высокопрочные полимерные композиты. Все виды применяемых для этих целей волокон дефицитны и дороги, однако возможно и экономически целесообразно комбинировать волокна с дисперсными наполнителями для получения оптимума свойств и минимальной стоимости материала.

Обычно используется два типа наполнителей для термопластов – волокнистые и порошковые. Наполнение термопластов минеральными порошками экономически очень выгодно. Наиболее распространенными волокнистыми наполнителями являются стеклянные и асбестовые волокна, а порошковыми – тальк, древесная мука. При этом наполнитель образует дисперсную фазу в термореактивной полимерной матрице. Основная цель введения в термопласты порошковых наполнителей – увеличение жесткости и стойкости полимера к длительным нагрузкам.

Так, введение талька в полипропилен увеличивает модуль упругости при растяжении. Однако при наполнении тальком полипропилена прочность при растяжении не улучшается, а ударная прочность даже снижается. Поэтому очевидно, что термопласты, наполненные минеральным порошком, следует применять весьма ограниченно для производства изделий, от которых требуется жесткость и твердость, и которые воспринимают длительные нагрузки, а для изделий, подвергающихся действию ударных нагрузок, они и вовсе не пригодны. Введение 40% талька в полипропилен приводит к тому, что его свойства становятся близкими к свойствам (в первую очередь, жесткости и ударной вязкости) ударопрочного полистирола.

Поэтому наполненный тальком полипропилен применяется для производства разнообразных предметов широкого потребления и деталей мебели. Более широкое применение для производства изделий такого типа объясняется, прежде всего, его низкой стоимостью по сравнению с другими материалами аналогичной жесткости. Однако изменения цен на материалы, происходящие, главным образом, из-за сложившейся в мире ситуации с сырьем, могут привести к тому, что термопласты, наполненные минеральными порошками, в частности ПП, наполненный тальком, найдут более широкое применение для производства изделий такого типа. [2]

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: