Основные свойства конструкционных материалов

Структурной основой полимерных молекул является гибкая линейная цепь, образованная из n звеньев длинной l0. Каждое из них связано с предыдущем звеном так, чтобы обеспечивалось полное свободное вращение. Это позволяет принимать каждому звену любые направления относительно предыдущего, поэтому такая цепь может принимать очень большое число конформаций. Полимеры могут быть разделены на две группы: полностью аморфные и кристаллические. Некоторые полимеры полностью аморфны при любых условиях; кристаллические полимеры, могут быть аморфны при определенных условиях (выше точки плавления или если полимер быстро охлажден из расплавленного состояния). [3]

К числу основных свойств полимеров и композитов на их основе относят текучесть, прочность и упругость.

Текучесть полимеров. Текучестьхарактеризует способность полимеров к вязкому течению при воздействии внешних усилий и численно равна обратной величине вязкости 1/n (где n-вязкость). О текучести полимерных материалов судят по показателю текучести расплава. За показатель текучести расплава принимается масса полимера, выдавленная в течение 10 мин. через формующую головку под давлением и при заданной температуре. Показатель текучести расплава i (в г/10 мин.) рассчитывают по формуле:

 

i=10Q/t,

 


где Q – масса полимера, г; t – время выдавливания, мин. Показатель текучести расплава является сравнительной характеристикой, однако, он широко используется на практике. По значению показателя текучести расплава проводится выбор метода переработки полимера. Для переработки методом экструзии показатель текучести расплава равен 0,3–1,2 г/10 мин (низковязкий полимер).

Прочность – способность материаласопротивляться в определенных пределах разрушению и остаточным деформациям от механических воздействий. Прочность твердых тел определяется строением вещества.

Упругость – свойство тел изменять свой объем и форму под влиянием физического воздействия.

Механические свойства высокопрочных материалов определяются наличием поверхностных дефектов (надрезов, трещин и т.п.). Около вершин этих дефектов при нагружении концентрируются напряжения, которые зависят от приложенного усилия, глубины трещины и радиуса кривизны в вершине трещины.

Для хрупких материалов коэффициент концентрации напряжений равен 102–103. В этом случае при действии даже небольших напряжений у вершины трещины растягивающие напряжения достигают предельных значений, и материал разрушается. Существует критическая длина трещины, при которой проявляется тенденция к её неограниченному росту, приводящая к разрушению материала.

Важно, что соответствующее критическое напряжение зависит от абсолютного размера трещины и оно тем выше, чем меньше длина трещины. Изделие с высокой прочностью может быть получено путем объединения параллельных волокон в канат. Напряжения между отдельными волокнами создаются вследствие трения скольжения, возникающего при растяжении каната. В процессе эксплуатации волокна в канате изгибаются, трутся и их прочность падает.

Например, высокопрочные волокна (стеклянные, углеродные, борные) очень чувствительны к поверхностным напряжениям и их нельзя применять в канатах, не использовав среду, которая связала бы их воедино. Когда применяются короткие волокна, которые объединяются связующим, то сохраняется принцип волокнистого армирования.

Этот принцип состоит в том, что при нагружении КМ на границе раздела матрицы с волокном возникают касательные напряжения, которые вызывают полное нагружение волокон.

В КМ сочетаются два противоположных свойства: высокий предел прочности и достаточная вязкость разрушения. Высокая прочность достигается за счет использования хрупких высокопрочных волокон, а достаточная вязкость разрушения обусловлена пластической матрицей и специфическим механизмом рассеивания энергии разрушения КМ. Кроме того, в традиционных сплавах удельная жесткость (E/d) практически одинакова, а в КМ она увеличивается на 100–200%. Это позволяет существенно снизить массу конструкций. [3]

Релаксационные свойства первичного и вторичного полимера.

Известно, что проведение изменений релаксации напряжений при различных температурах позволяет наиболее полно охарактеризовать механическое поведение полимерных материалов.

Для детальной оценки проведены испытания на релаксацию напряжений в широком интервале температур (для ПМ 20–120°С). Исследовали первичный и вторичный ПМ (из упаковочного материала) проводилась на приборе Регель – Дубова.

Процесс релаксации напряжения происходит в результате взаимодействия и диффузии кинетических единиц – релаксаторов. Релаксаторами могут быть различные атомные группы, повторяющиеся звенья, более крупные фрагменты, микрополости, концентраторы напряжения.

Полимерный материал можно рассматривать как состоящий из релаксаторов и нерелаксаторов, причем подавляющая часть материала после «мгновенного» задания деформации состоит из релаксаторов, взаимодействующих между собой с образованием нерелаксирующего материала.

Наиболее важными характеристиками в смысле работоспособности КП являются изменение сдвига у0 или начальный модуль Е0, которые развиваются после окончания «мгновенного» задания деформации, а также квазиравновесное напряжение у или модульE.

Сравнивая поведение первичного и вторичного ПП, можно отметить, что у0 и у для вторичного ПП при всех температурах примерно в 2 раза выше, чем для первичного. Таким образом, вторичный ПП является более жестким, чем первичный. Практически это означает, что вторичный ПП может не только успешно использоваться для изготовления различных материалов, но и для изготовления более жестких конструкций, выдерживающих существенные напряжения, не разрушаясь, длительное время. [4]

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: