Электроснабжение городского хозяйства

Содержание

 

 

 

Введение 3

1. Электроснабжение городского хозяйства 4

2. Система теплоснабжения 18

3. Системы и схемы водоснабжения 36

Заключение 43

Список литературы 46

 

 

Введение

 

Наружные инженерные сети являются одним из важных элементов инженерного благоустройства городских территорий. Инженерные сети предназначены для комплексного и полного обслуживания нужд населения, культурно-бытовых предприятий и потребностей промышленности.

Инженерные коммуникации бывают подземными, наземными и надземными.

Инженерное обеспечение представляет собой совокупность систем водоснабжения, канализации, электро-, газо и теплоснабжения, призванных обеспечить функционирование и дальнейшее развитие города.

К подземным инженерным сетям относятся трубопроводы, кабели и коллекторы.

В подземном хозяйстве города используют трубопроводы различного назначения: трубопроводы, сети водоснабжения (хозяйственно-питьевые, противопожарные, горячего и промышленного водоснабжения, поливомоечные).; трубопроводы канализации (бытовых, дождевых и промышленных вод); трубопроводы тепло- и газоснабжение.

Кабельные сети включают в себя электрические сети высокого и низкого напряжения, предназначенные для электроснабжения (в том числе наружное освещение и обеспечение электротранспорта), и кабели слабого тока для телеграфной и телефонной связи, радиовещания и сигнализации специального назначения.

Основную сеть трубопроводов, каналов и кабелей размещают под улицами и площадями городов (населенных пунктов), и они образуют сложные подземные системы. Подземные инженерные сети проектируются комплексно, с учетом начертания улично-дорожной сети города. По заданной категории дороги устанавливают параметры элементов проектируемой улично-дорожной сети, под которой размещаются инженерные сети.

Электроснабжение городского хозяйства

 

Электрическими станциями называют комплекс взаимосвя­занных инженерных сооружений, оборудования и коммуникаций, предназначенный для превращения природных энергоресурсов в электроэнергию. Процесс производства электроэнергии отличается однородностью и массовостью продукции. Однородность продук­ции открывает путь к типизации основных видов электростанций и серийности выпуска небольших типоразмеров унифицированного оборудования: котлоагрегатов, турбин, генераторов и трансформа­торов. Важной особенностью современных электростанций является установка небольшого количества (4-6) очень крупных агрегатов - энергетических блоков единичной мощностью от 200 до 1200 МВт. Концентрация энергопроизводства ведет к снижению единовре­менных затрат и ежегодных расходов на электростанциях. Массо­вость, огромные масштабы производства электроэнергии, делают особенно важным повышение эффективности использования пер­вичных энергоресурсов. При массовом производстве даже очень небольшие изменения экономичности дают существенную эконо­мию народнохозяйственных затрат.

Для электростанций является неизбежным переменный режим работы, так как процесс производства электроэнергии должен не­прерывно и точно следовать за процессом ее потребления. Эта осо­бенность условий работы электростанций существенно отличает их от предприятий других отраслей промышленности.

Отмеченные особенности электрических станций определяют основные требования, которые сводятся к требованиям высокой надежности и экономичности энергопроизводства. Эти требования должны рассматриваться неразрывно, но при этом надежность энергообеспечения потребителей имеет приоритет. Прежде всего потому, что перерыв в подаче электроэнергии ведет к прекращению работы ее потребителей, уменьшению выпуска и к массовому браку продукции, а в некоторых случаях и к аварии основного оборудования потребителей. По этим причинам среди всех мер обеспечения надежности специфическими для энергетики являются обязатель­ное требование наличия резервов мощности, дублирование основ­ных агрегатов и коммуникаций, а также объединение электростан­ций в энергосистемы.

Районные энергетические системы представляют собой со­вокупность электростанций, повышающих и понижающих под­станций, связанных линиями электропередачи. Дальнейшая цен­трализация достигается объединением при помощи межсистем­ных линий электропередачи районных энергосистем в объеди­ненную энергосистему, на базе которых формируется единая энергетическая система страны.

По назначению электростанции разделяются на городские, снабжающие энергией города и населенные пункты, промышлен­ные, обеспечивающие энергией технологические нужды производ­ства, и районные, снабжающие электроэнергией всех потребителей, расположенных на больших территориях. В настоящее время ос­новным видом электростанций являются государственные район­ные электростанции (ГРЭС).

В зависимости от вида используемого природного энергоре­сурса различают следующие типы электростанций.

Тепловые (ТЭС), использующие химически связанную энер­гию органического топлива, которая высвобождается в процессе горения топлива, а полученная теплота используется для превра­щения в механическую работу и далее в электрическую энергию.

Атомные (АЭС), на которых в качестве источника энергии используется процесс деления ядер атомов изотопов урана-235, плутония-239, сопровождающийся выделением большого количе­ства теплоты. Полученная теплота отводится через систему охлаж­дения реактора, а затем используется так же, как и на обычных теп­ловых электростанциях.

Гидравлические (ГЭС), использующие потенциальную энер­гию напора воды речных стоков или приливов и отливов.

Ветровые (ВЭС), использующие в качестве источника кине­тическую энергию движения воздушного потока. Особенностями ВЭС является малая мощность агрегатов и зависимость выработки электроэнергии от наличия и скорости ветра.

Солнечные (ГелиоЭС), использующие энергию излучения солнца для прямого преобразования в электроэнергию с помощью фотоэлектрических элементов, а также для получения теплоты, ко­торая затем превращается в электроэнергию по схеме обычных те­пловых электростанций.

Геотермические электростанции, использующие теплоту зем­ной коры в районах активного проявления вулканической деятель­ности с последующим преобразованием в электроэнергию по тех­нологии тепловых электростанций.

В настоящее время основным типом электростанций является ТЭС, на долю которых приходится около 80% общей выработки электроэнергии в нашей стране. Тепловые электростанции подраз­деляются на конденсационные (КЭС), вырабатывающие только электроэнергию, и теплофикационные (ТЭЦ), на которых осущест­вляется комбинированное производство электрической и тепловой энергии в виде пара или горячей воды для теплоснабжения потре­бителей. Тепловые электростанции различаются и по первичному двигателю, используемому для привода электрического генератора. В настоящее время в качестве первичных двигателей на тепловых электростанциях используют: 1) двигатели внутреннего сгорания -бензиновые, дизельные или газовые, мощностью от нескольких ки­ловатт до 50 МВт, с КПД выработки электроэнергии от 30 до 50%, а при утилизации теплоты - до 85%; 2) газовые турбины, исполь­зующие смесь продуктов сгорания топлива и воздуха, мощностью от 200 кВт до 200 МВт, с КПД от 20 до 40%, а при утилизации теп­лоты до 80-85%; 3) паровые турбины, рабочим телом в которых яв­ляется пар под давлением до 240 бар и температурой до 560°С, мощностью от 0,75 до 1200 МВт, с КПД до 40%, а при утилизации теплоты отработанного пара до 80-85%. На современных ТЭС ос­новным видом первичного двигателя являются паровые турбины.

Осуществление непрерывного процесса превращения теплоты в работу с использованием ограниченного объема рабочего тела возможно лишь при осуществлении круговых процессов (циклов) изменения его состояния.

Сущность рабочего процесса на ТЭС составляет последова­тельность энергетических превращений. Для каждой стадии этого процесса справедлив закон сохранения вещества и энергии, т. е. со­ответствие между подведенной энергией, полезной составляющей и потерями энергии.

Термический КПД идеального кругового про­цесса будет зависеть от относительной величины (Готвподв), тео­ретически неизбежных при данной форме и параметрах цикла по­терь теплоты в «холодный источник».

В рабочем процессе ТЭС в качестве подведенной энергии рас­сматривается химическая энергия сожженного топлива (Оюдв ~ В <2н)-Конечным продуктом этого процесса на КЭС является электроэнер­гия (бшл = 860 W), а на ТЭЦ - электроэнергия и теплота, отпущенная из регулируемых отборов турбин потребителям (Qnon ~ 860 W + Qr).

Состав потерь в рабочем процессе ТЭС является вполне определенным:

• теоретически неизбежные потери в холодный источник, величина которых определяется термическим КПД процесса, составляющим 40-60%;

• дополнительные потери в холодный источник вследствие отклонения реальных процессов от идеальных, величина которых опре­деляется внутренним относительным КПД турбин, равным 82-87%;

• потери теплоты в котлоагрегатах, величина которых определяется КПД энергетических котлов, равным 87-92%;

• механические и электрические потери, которые играют
скромную роль в тепловом балансе, так как механический КПД
турбин и электрический КПД генераторов составляют 97-99%

каждый;

• потери рассеивания теплоты в окружающей среде характеризуются величиной КПД теплового потока, равной 97-99%;

• потери вследствие затрат электроэнергии и теплоты на
собственные нужды ТЭС составляют 5-10%.

Наличие затрат энергии на собственные нужды ТЭС вызывает необходимость рассматривать две категории показателей тепловой экономичности станций:

• брутто, исчисляемые по выработке энергии;

• нетто, определяемые по отпущенной энергии.

Технология производства электроэнергии на ТЭС включает в себя несколько взаимосвязанных процессов: 1) топливоснабжения; 2) водоснабжения и водоотведения; 3) производство теплоты; 4) пре­образования энергии в механическую работу; 5) генерирования элек­троэнергии; 6) утилизации и удаления отходов энергопроизводства.

Функционирование современных мощных ТЭС требует боль­шого количества топлива, воздуха, воды и других ресурсов. Так, конденсационная ТЭС мощностью 2400 МВт сжигает 1060 т/ч ан­трацита, при этом используется 820 т/ч кислорода и образуется 10 млн м3/ч дымовых газов, содержащих 2350 т двуокиси углеро­да, 25 т паров воды, 34 т двуокиси серы, 9 т окислов азота, 2 т летучей золы. Кроме того, из топок котлов удаляется 34,5 т/ч шлаков, а из бункеров электрофильтров 193,5 т/ч золы. Расход воды на ТЭС связан как с компенсаций потерь рабочего тела, так и охлаждением пара в конденсаторе. Особенно значителен расход охлаждающей воды. Так, на конденсационной станции мощностью 2400 МВт этот расход соответствует 300-400 тыс. м3/ч.

Система топливоснабжения современной ТЭС представляет собой комплекс инженерных сооружений, коммуникаций и обору­дования, предназначенных для разгрузки, складирования, подго­товки и подачи топлива в котлоагрегаты. Твердое и жидкое топливо доставляются на ТЭС, как правило, железнодорожным транспор­том. Поступающие на ТЭС железнодорожные составы твердого то­плива автоматически взвешиваются на вагонных весах. Затем ваго­ны поступают в приемно-разгрузочное устройство, оборудованное эстакадами для приема саморазгружающихся вагонов или вагоно-прокладывателями со щелевыми бункерами и лопастными питате­лями. Для приема жидкого топлива (мазута) подъездные пути ТЭС имеют специальную эстакаду, оборудованную системой разогрева, слива и перекачки мазута. Природный газ на ТЭС подается по газо­проводу в газораспределительную станцию.

Из приемно-распределительного устройства топливо подается на склад и в систему топливоподачи. Твердое топливо во избежа­ние самовозгорания хранят в штабелях, уплотненных путем укатки. Хранение мазута производят в специальных резервуарах, которые могут быть наземными, полуподземными и подземными. Топлив­ные склады ТЭС должны вмещать запасы топлива на 15-20 суток работы станции. Транспортировка твердого топлива по территории ТЭС и в котельную осуществляется ленточными транспортерами (конвейерами), жидкого и газообразного - по трубопроводам.

В системе топливоподачи твердого топлива предусматривают­ся установки и оборудование, обеспечивающие предварительное измельчение, подсушку и размол топлива в тончайшую пыль, кото­рая вместе с воздухом подается в топку котлоагрегатов. Система топливоподачи мазута включает в себя фильтры, подогреватели и насосы, обеспечивающие подачу топлива к форсункам котлоагрега­тов. Система газоснабжения включает в себя газораспределитель­ные пункты и трубопроводы, обеспечивающие снижение давления, очистку и подачу природного газа на горелки котлоагрегатов.

Воздух, необходимый для горения топлива, подается при по­мощи дутьевых вентиляторов из верхней части помещения котель­ного цеха в воздухоподогреватели котлоагрегатов. Весь расход воз­духа делится на две части: 1) первичный воздух, который подается в топку вместе с топливом через систему пылеприготовления, где он выполняет роль сушильного и транспортного агента и 2) вто­ричный воздух, который подается непосредственно в топку котла. При сжигании жидкого топлива воздух подается в форсунки, при сжигании газа - в горелки, а при необходимости и в топку котла.

Система водоснабжения ТЭС включает четыре взаимосвязан­ных подсистемы:

• подготовки питательной воды и конденсата, в состав которой входят трубопроводы, подогреватели низкого и высокого давления, питательный бак, деаэратор, конденсатные и питательные
насосы;

• охлаждения конденсаторов, в состав которой входят кон­денсаторы, водоводы, циркуляционные насосы, пруды-охладители или градирни, обеспечивающие охлаждение и конденсацию пара, отработанного в турбинах;

• восполнения добавочной воды, в состав которой входят трубопроводы, насосы сырой и добавочный воды, фильтры химводоочистки и деаэратор химочищенной воды;

• подпитки тепловой сети, в состав которой входят трубопроводы, сетевой деаэратор и подпиточные насосы.

Кроме того, вода на ТЭС используется для охлаждения: 1) мас­ла и воздуха, используемых в турбогенераторах; 2) подшипников мельниц, дымососов и других механизмов, а также для удаления золы и шлаков.

Вода как рабочее тело поступает в экономайзер котлоагрегата, а затем в барабан и по спускным трубам в распределительные коллектора и экранные поверхности нагрева. При сгорании топлива в топке котла выделяется большое количество теплоты, часть кото­рого путем теплообмена передается воде, которая испаряется. В па­роперегревателе влажный пар перегревается и направляется в тур­бину, которая служит приводом электрического генератора.

Полученная электроэнергия передается через главное распре­делительное устройство, трансформаторы и линии электропередачи к потребителям. Часть выработанной электроэнергии через распределительное устройство собственных нужд направляется для элек­троснабжения самой ТЭС.

 


Тепловой схемой электростанции называют чертеж, на кото­ром показаны в условном изображении оборудование и коммуни­кации, которые используются в технологическом процессе преоб­разования тепловой энергии пара в электрическую энергию.

Современная электроэнергетика базируется на трехфазном пе­ременном токе с частотой 50 Гц и стандартным напряжением: 127, 220, 380, 660 В и 3, 6, 10, 20, 35, ПО, 150, 220, 330, 500, 750 кВ. Применение трехфазного переменного тока объясняется экономи­ческой эффективностью установок и сетей, возможностью транс­формации и передачи электроэнергии на большие расстояния, а также применения надежных, простых и экономичных асинхрон­ных электродвигателей.

Электрическая часть каждой электростанции характеризуется схемой электрических соединений, на которой условными обозна­чениями нанесены все агрегаты, аппараты и электрические соеди­нения между ними. Схемы электрических соединений разделяются на две части: 1) главные схемы, или первичные цепи, по которым электроэнергия передается от генераторов к электроприемникам, и 2) схема вторичных цепей, которые используются для соединения и питания релейной защиты, автоматики, приборов учета, контроля и управления.

Главные схемы электростанций выполняются, как правило, однолинейными, для одной фазы, что упрощает и придает им на­глядность. На однолинейных схемах все элементы первичной цепи показываются в обесточенном состоянии. При выборе схемы элек­трических соединений электростанций руководствуются следую­щими соображениями. Если более 75% мощности станции переда­ется в энергосистему, тогда целесообразно применение схемы бло­ка «генератор-трансформатор», при которой генератор соединяется непосредственно с трансформатором без промежуточных звеньев.

В блочных схемах мощность трансформаторов должна быть равна мощности генераторов, а их количество равно числу генераторов. В установках свыше 150 кВт к одному трансформатору могут быть подключены два генератора станции.

Если нагрузка потребителей местного района и собственных нужд станции превышает 25% установленной мощности генерато­ров, тогда целесообразна схема, имеющая сборные шины генератор­ного напряжения, которые служат для приема и распределения элек­троэнергии от всех генераторов электростанции. В этом случае для связи с системой предусматривается установка двух трансформато­ров суммарной мощностью, равной или несколько большей переда­ваемой в систему мощности.

Для генерации электроэнергии на тепловых электростанциях применяют синхронные генераторы трехфазного переменного тока, первичным двигателем которых могут служить двигатели внутрен­него сгорания, паровые и газовые турбины.

Во время работы синхронного генератора его обмотки нагрева­ются. Для того чтобы температура нагрева не превышала допустимых значений, все турбогенераторы выполняются с искусственным охла­ждением. Существуют две системы охлаждения: 1) поверхностное, при котором охлаждающий газ (воздух или водород) с помощью вен­тилятора подается внутрь генератора через воздушный зазор и венти­ляционные каналы и не соприкасается с обмотками статора и ротора; 2) внутреннее, при котором охлаждающее вещество (газ или жид­кость) непосредственно соприкасается с проводниками обмоток ге­нератора. Отечественные турбогенераторы выпускаются с воздуш­ным, водяным и водородным охлаждением. Чем эффективней систе­ма охлаждения, тем больше может быть мощность генератора при тех же габаритах. Так, переход от воздушного охлаждения к водяно­му позволяет увеличить мощность генератора в 4 раза.

Для преобразования напряжения трехфазного электрического тока на электростанциях устанавливают силовые трансформаторы, которые изготавливаются понижающими и повышающими напря­жение, двух- и трехобмоточными, трех- и однофазные. Наибольшее распространение получили трехфазные двухобмоточные трансфор­маторы, у которых мощность из первичной обмотки низкого напря­жения (НН) электромагнитным путем передается в обмотку высоко­го напряжения (ВН), при этом происходит увеличение напряжения. Повышение напряжения обеспечивает передачу электроэнергии на большие расстояния с минимальными потерями. Поэтому такие трансформаторы устанавливаются в линиях связи электростанций с энергосистемой и в блоках «генератор-трансформатор».

Конструкция силовых трансформаторов во многом определя­ется системой охлаждения обмоток. Большинство трансформаторов имеет масляное охлаждение - естественное, с дутьем и естествен­ной циркуляцией, с дутьем и принудительной циркуляцией масла через радиаторы, развитая поверхность которых обеспечивает эф­фективный отвод тепла. Чем эффективней система охлаждения, тем больше может быть мощность трансформатора. Трансформаторы характеризуются следующими параметрами: 1) номинальное на­пряжение первичной и вторичной обмотки - это напряжение между выводами при холостом ходе трансформатора; 2) номинальная мощность - это мощность нагрузки при номинальной температуре охлаждающей среды и максимальным превышением температуры обмоток над охлаждающей средой не более 65°С; 3) номинальный ток любой обмотки трансформатора определяется по ее номиналь­ной мощности и номинальному напряжению.

Кроме силовых трансформаторов, на электростанциях уста­навливаются понижающие трансформаторы для питания собствен­ных нужд (ТСН), а также измерительные трансформаторы тока (ТТ) и напряжения (ТН), которые служат для питания контрольно-измерительных приборов и схем релейной защиты и автоматики. Эти трансформаторы снижают напряжение, отделяют цепи высоко­го и низкого напряжения, что обеспечивает их безопасное обслу­живание.

Соединение аппаратов в электрической установке станции между собой осуществляется неизолированными проводами и ши­нами, изолированными проводами и кабелями. В распределитель­ных устройствах электростанций благодаря простоте монтажа, вы­сокой экономичности и надежности наибольшее распространение получили жесткие и гибкие шины. В установках генераторного на­пряжения в зависимости от расчетного тока нагрузки применяют жесткие одно-, двух- и трехполосные алюминиевые шины. В от­крытых распределительных устройствах применяют гибкие шины, выполненные из алюминиевых или сталеалюминиевых проводов. Для крепления шин и изоляции их от заземленных частей приме­няются опорные, проходные и подвесные изоляторы, выполненные из электроизоляционного фарфора или специальных полимеров. Изоляторы для наружной установки имеют развитую ребристую поверхность, благодаря чему сохраняется необходимая электриче­ская прочность при атмосферных осадках,

Для соединения отдельных элементов на электростанциях ши­роко используют трех- и четырехжильные кабели. Кабели имеют токоведущие жилы (одно- или многопроволочные) из меди или алюминия, изолированные бумажными лентами, резиной или поли-винилхлоридной оболочкой. Кабели, как правило, имеют общую поясную изоляцию, оболочку или бронирование стальной лентой.

В электроустановках напряжением свыше 1000 В цепи при­соединяются к сборным шинам через разъединители и выключате­ли высокого напряжения. Выключатели служат для включения и отключения электрических цепей высокого напряжения под на­грузкой, а также для их отключения в аварийных режимах, напри­мер, при коротких замыканиях. Они должны за минимальное время отключить цепь при коротких замыканиях, чтобы не допустить раз­вития аварии. Поэтому основной характеристикой выключателя яв­ляется его отключающая способность, т. е. наибольший ток, кото­рый он способен надежно отключить. По конструкции и способу гашения электрической дуги различают воздушные, масляные бо­ковые, маломасляные, вакуумные и элегазовые выключатели. В се­тях 6-10 кВ наибольшее распространение получили маломасляные и вакуумные, а в сетях свыше 10 кВ - элегазовые выключатели. Контактная система каждой фазы выключателя вместе с гаситель­ной камерой, как правило, помещается в бак цилиндрической фор­мы с трансформаторным маслом или в специальную камеру, кото­рая заполняется газовой смесью или в ней создается вакуум. Здесь масло, вакуум или газ служат для гашения электрической дуги за 0,015-0,025 с, что гарантирует сохранность оборудования и ЛЭП при возникновении аварийных ситуаций. Отключение выключателя происходит под действием релейной защиты с помощью специаль­ного механизма. Достоинствами этих выключателей являются не­большой вес и размеры, надежность и удобство эксплуатации.

Кроме выключателей в цепях высокого напряжения устанав­ливаются разъединители, которые предназначены для отключения и включения цепей при отсутствии в них тока. По конструкции разъединители напоминают рубильники и в отключенном состоя­нии создают видимый разрыв цепи тока, обеспечивая тем самым безопасность проведения ремонтных работ в электроустановках свыше 1000 В. На отходящих линиях электропередачи, кроме шин­ных, устанавливаются и линейные разъединители, отключение кото­рых не позволяет подать напряжение к месту работы по линии элек­тропередачи. Для защиты линий электропередачи собственных нужд электростанций предназначены предохранители. Основным элемен­том предохранителя является плавкая вставка, включаемая в рассечку с защищаемой цепью, сгорание которой при перегрузке или коротком замыкании приводит к отключению поврежденного элемента. Для облегчения гашения дуги плавкая вставка выполняется из ряда па­раллельных проволок малого сечения или тонких медных пластин, помещенных в фарфоровый корпус и засыпанных кварцевым песком.

Бесперебойное снабжение потребителей может быть обеспе­чено только при правильно выбранной схеме электростанции. Ос­новными требованиями, предъявляемыми к схемам, являются на­дежность работы установок, гибкость схемы, удобство оператив­ных переключений и вывода в ремонт оборудования, что обеспечи­вает экономичность и надежность работы электростанций.

Расчет и выбор основного оборудования ТЭС

Представление о рабочем процессе и оборудовании, исполь­зуемом на ТЭС, дают принципиальные технологические схемы. В зависимости от назначения, существующих нагрузок, количества вырабатываемой энергии, вида и параметров теплоносителя произ­водится расчет тепловой схемы и выбор основного и вспомогатель­ного оборудования электростанции. Тепловые схемы станций раз­рабатываются в нескольких вариантах, окончательный выбор про­изводится на основании технико-экономических расчетов.

При проектировании и сопоставлении тепловых схем необхо­димо исходить из следующих положений. Одной из главных харак­теристик, определяющих выбор оборудования, является коэффици­ент теплофикации, отражающий степень использования регулируе­мых отборов турбин.

Любая ТЭЦ и целесообразность ее сооружения определяются, прежде всего, количеством произведенной электро­энергии по теплофикационному циклу. Соотношение объемов электроэнергии, вырабатываемой по теплофикационному и конден­сационному циклам, определяет величину основных технико-экономических показателей эксплуатации ТЭЦ. Поэтому для выбо­ра турбин используется метод энергетических характеристик. Для этого необходимо и достаточно знать обобщенные энергетические характеристики турбин. Расчеты, выполняемые с использованием этих характеристик, дают достаточную степень точности для про­ектных и технико-экономических расчетов.

Наиболее экономичными для покрытия тепловых нагрузок яв­ляется использование турбин с противодавлением, обеспечиваю­щих 100%-ю выработку электроэнергии по теплофикационному циклу с наименьшим расходом топлива (Ьэ = 170 г у.т./кВт-ч). Од­нако в чистом виде такую схему можно реализовать только при на­личии стабильной круглогодовой нагрузки. Так, для городских ТЭЦ выбор турбин с противодавлением производится исходя из летней средней часовой нагрузки горячего водоснабжения.

Технико-экономические показатели работы ТЭС

При проектировании систем энергоснабжения необходимо технико-экономическое сопоставление вариантов. Расчет технико-экономических показателей ТЭС выполняется в определенной после­довательности.

Стоимость единицы установленной мощности определяется на основании сметно-финансовых расчетов. Предварительно капи­тальные вложения могут быть определены по укрупненным показа­телям сметной стоимости строительства ТЭС. Эксплуатационные расходы определяются по соответствующим сметам затрат на про­изводство электро- и теплоэнергии.

 

                      







Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: