Поверхностные явления в полупроводниках

 

Энергетический спектр электрона, движущегося в строго периодическом поле неограниченного кристалла, имеет зонную структуру: полосы разрешенных энергий отделены друг от друга зонами запрещенных энергий. Нарушение периодичности потенциала, вызванное дефектами решетки (примесными атомами, вакансиями и др.), приводит к возникновению в запрещенной зоне дискретных уровней.

Подобными дефектами являются и свободные поверхности кристалла, на которых происходит обрыв решетки и нарушение периодичности ее потенциала (рис.3.1, а). Влияние такого рода дефектов на энергетический спектр электронов было исследовано Таммом в 1932 г. Он показал, что обрыв решетки приводит к появлению в запрещенной зоне полупроводника разрешенных дискретных уровней энергии для электронов, расположенных в непосредственной близости от поверхности кристалла (рис.3.2, б). Такие уровни получили название поверхностных уровней или поверхностных состояний.


Рис.3.1 Возникновение поверхностных состоянии: а - обрыв периодического потенциала решетки у поверхности кристалла; б - поверхностные состояния, возникающие вследствие обрыва решетки; в - чужеродные атомы М на поверхности; г - типы поверхностных состояний (Ед - донорные, Еа - акцепторные, Ер - рекомбинационные)

 

Наглядное представление о возникновении поверхностных состояний можно получить из рассмотрения связей, действующих между атомами в объеме и на поверхности кристалла. На рис.3.2 изображена плоская модель решетки германия. Атом в объеме кристалла окружен четырьмя ближайшими соседями, связь с которыми осуществляется путем попарного обобществления валентных электронов. У атомов, расположенных на свободной поверхности АА, одна валентная связь оказывается разорванной, а электронная пара неукомплектованной. Стремясь укомплектовать эту пару и заполнить свою внешнюю оболочку до устойчивой восьмиэлектрон-ной конфигурации, поверхностные атомы ведут себя как типичные акцепторы, которым в запрещенной зоне соответствуют акцепторные уровни Еа (рис.3.1, б). Электроны, попавшие на эти уровни из валентной зоны, не проникают в глубь кристалла и локализуются на расстоянии порядка постоянной решетки от поверхности. В валентной зоне возникают при этом дырки, а в поверхностном слое полупроводника - дырочная проводимость.


Рис.3.2 Схема возникновения акцепторных поверхностных состояний на чистой поверхности полупроводника

 

Рассмотренные поверхностные состояния возникают на идеально чистой бездефектной поверхности, получить которую практически невозможно. В реальных условиях поверхностные свойства полупроводников определяются поверхностными состояниями, созданными главным образом чужеродными атомами (молекулами). на поверхности. На рис.3.1, в показана зонная структура полупроводника. Вертикальной прямой ВС обозначена одна из свободных его поверхностей. Предположим, что на этой поверхности химически сорбировалась частица М. При такой сорбции волновые функции решетки и частицы перекрываются настолько, что частицу можно рассматривать как примесь, локально нарушающую периодичность потенциала решетки и приводящую к возникновению в запрещенной зоне поверхностного уровня.

Характер таких уровней зависит от природы поверхности и частиц. Они могут быть акцепторными, донорными и рекомбинационными (рис.3.1, г). Так, кислород, сорбированный на поверхности германия, создает акцепторные уровни, вода - донорные. Если уровни Р являются акцепторными, то они захватывают электроны и заряжают поверхность полупроводника отрицательно с поверхностной плотностью σ - = gN f - ф-д, где N - число молекул, адсорбированных единицей поверхности кристалла; fф_д - функция Ферми - Дирака, выражающая вероятность заполнения поверхностных уровней электронами; q - заряд электрона. Если уровни Р являются донорными, то они, отдавая электроны кристаллу, заряжают поверхность полупроводника положительно с плотностью σ+ = qNf ф-д; где f ф_д - вероятность того, что поверхностные уровни являются пустыми, т.е. частицы М ионизированы.

При высокой плотности поверхностных состояний они, взаимодействуя друг с другом, могут размыться в поверхностную зону. Электроны в этой зоне могут двигаться только вдоль поверхности.

Быстрые и медленные поверхностные состояния. Поверхностные состояния, обусловленные дефектами поверхности и адсорбцией на ней чужеродных частиц, располагаются в непосредственной близости от поверхности и находятся в хорошем контакте с объемом полупроводника. Поэтому время установления равновесия этим состояний с объемом полупроводника (время перехода электронов из энергетических зон на поверхностные уровни или обратно) оказывается очень небольшим (≈10-7с). Такие состояния называют - быстрымиповерхностными состояниями. Они имеют плотность порядка 1015 м-2, зависящую от характера обработки поверхности, и могут обладать большими сечениями захвата как для электронов, так и для дырок, вследствие чего могут служить эффективными центрами рекомбинации.

В нормальных условиях поверхность полупроводника покрыта слоем окисла толщиной по крайней мере в десятки ангестрем (рис.3.3, а). На внешней поверхности окисла сорбируются примесные атомы, создающие внешние или медленные поверхностные состояния (рис.3.3, б). Время установления равновесия таких состояний с объемом полупроводника значительно больше, чем для быстрых состояний, и колеблется от микросекунд до минут, часов и даже суток. Это обусловлено тем, что вероятность прохождения электронов сквозь окисный слой, являющийся изолятором, весьма низка. С увеличением толщины окисной пленки постоянная времени увеличивается.

Медленные поверхностные состояния могут создаваться также атомами примеси, находящимися в самом окисле. Плотность медленных состояний значительно больше, чем быстрых (1017 - 1019м-2), и сильно зависит от их природы и состояния внешней среды.

 

Рис.3.3 Структура поверхностного слоя германия (а) и расположение быстрых и медленных поверхностных состояний (изгиб зон у поверхности не показан) (б): 1 - германий; 2 - переходный слой; 3 - окисный слой; 4 - адсорбированные примеси.

 



Задача 1

 

Вычислить для температуры 300°С контактную разность потенциалов р-п перехода, сформированного в кремнии, если равновесные концентрации основных носителей заряда в р-n-областях одинаковы и равны 10 17см-3, а собственная концентрация ni = 1013см-3.

Решение:

Vk = (KT/e) ln (nn/ np)

 

Учитывая, что

nn ·pp = ni2 Vk = (KT/e) ln (nn ·pp / ni2)

 

Величину ni определяем по формуле

ni = 2

 

Значения nn и pp определим, исходя из выражений для удельной проводимости:

σn-Si = σnn + σpn = e (nnUn + pnUp) =e [ nnUn+ (ni2 / nn) Up ]

σp-Si = σpp + σpp = e (npUp + ppUn) =e [ npUp+ (ni2 / pp) Un ]

 

Отсюда

 

nn = σn-Si/2e 2e) 2 - ni2 Un Up

pp = σp-Si/2e 2e) 2 - ni2 Un Up

 

Подставляя численные значения, получим:

ni2= 0,98 ·1018 м - 3;

nn = 0,87 ·1023 м - 1;

pp = 0,87 ·1021 м - 1;

Vk = 0,395 В.

 

Задача 2

 

Определить положение узла, направления, плоскости в кристалле Si, индексы Миллера которых [[1 0 1]], [1/2 1 1], (121).

Найти температуру истощения примеси Si n-типа, если красная граница фотопроводимости составляет 6·10-6м. Постоянная Холла при этой температуре 4·10-3м-3/К. Рассеяние носителей заряда осуществляется на ионизированных примесях, mn=0,7m0.

Положение любого узла решетки определяется заданием трех координат: х, у, z. Эти координаты можно выразить следующим образом: х=та, y=nb, z=pc где а, Ь, с - параметры решетки: т, п. р - целые числа. За единицу измерения длины обычно принимают параметры решетки. Тогда координаты узла будут просто числа т, п,р

Это и есть индексы Миллера узла. Учитывая вышесказанное, узел I имеет индексы 1 - [[1 0 1]], а узел 2- [1 1 0].

За направление в кристаллической решетке принимают прямую, проходящую через начало координат. Тогда индексы узла I кристаллической решетки, через который она проходит, однозначно определяют индексы направления. Поэтому направление I имеет индексы [0 1 1], а направление 2 -

[1 1 0].

Индексы плоскости отыскивают следующим образом. Выражают отрезки A, В, С, которые плоскость отсекает на осях решетки, в осевых единицах. Находят величины, обратные этим отрезкам: 1/A, 1/В, 1/С. Полученные дроби приводят к общему знаменателю. Пусть таковым будет число D. Тогда числа h=D/A, K=D/B, l =D/C принимают за индексы плоскости. Плоскость, изображенная на рис.5.1, отсекает по соответствующим осям отрезки А = 1, В=1/2, С = 1. Тогда 1/А =1; 1/В = 2; 1/С =1, D =1; h= 1; К = 2; l = 1.

Рис.5.1

 

Область истощения примеси. По мере повышения температуры концентрация электронов на примесных уровнях уменьшается - примесные уровни истощаются. При полном истощении этих уровней концентрация электронов в зоне проводимости будет равна концентрации примеси, если концентрацией собственных носителей можно по-прежнему пренебречь:

n = Nn (5.1)

 

Воспользовавшись для п выражением

n = Ne exp (μ/kT) ( 5.2), получим Ne exp (μ/kT) = Nд. (5.3).

 

Отсюда находим

μ = kTln (Nд /Nc). ( 5.4)

 

Уровень μ должен располагаться ниже уровней - Ед так как при μ = - Ед ионизации подвергается в среднем лишь половина примесных уровней. Однако обычно за температуру истощения примесей принимают температуру Та, при которой уровень Ферми совпадает с донорными уровнями Ед: μs = - Ед. Положив в формуле (5.2) Т = Тs, μ = μs и п = Nд/2, получим

μs = kTs ln (Nд /2Nc) = - Ед ( 5.5)

 

Отсюда находим температуру истощения примесей

Ts=  ( 5.6)

Задача 3

 

Определить, какие электрохимические процессы будут происходить на аноде и катоде. Найти толщину осажденной на катоде металлической пленки. Электролитом является водный раствор Ag2SO4. Сила тока I= 3 A. Время - 2 часа, площадь катода 5 см2. Электроды платиновые.

Решение:

Распишем все возможные электрохимические реакции, которые могут протекать как на аноде так и па катоде; определим по таблице электродные потенциалы этих реакций.

В растворе находятся следующие ионы: Ag+, SO2-4, а также нейтральные молекулы воды. Следовательно, на катоде (отрицательно заряженный электрод) могут протекать следующие электрохимические реакции:

 

Ag+e<->Ag φ=+0,799B,

20+2е<-> Н2↑+2OH φ=-0,413В

 

на аноде (положительно заряженный электрод):

 

2SО-2 4 - 2е<->S202 - 8 φ=+2,01В,

20-4е<->02↑ +4Н* + φ = 0,81В.

 

Необходимо знать, что на аноде легче окисляются те атомы, молекулы, ионы, потенциалы которых в данных условиях наиболее низкие, а на катоде восстанавливаются легче те атомы, ионы, молекулы, потенциалы которых наиболее высокие.

Сопоставление потенциалов показывает, что на катоде происходит восстановление серебра: Ag++е<->Ag, а на аноде - окисление воды: 2Н2О - 4е<->О2+4Н+.

Для определения толщины осажденной на катоде пленки серебра запишем объединенное уравнение законов Фарадея:

 

m= (Э/F) lt,

где Э=A/Z

А - атомный вес,

Z - валентность;

F - постоянная Фарадея.

m=pV=psh,

где р - плотность серебра = 10,5 Г/см3;

s - площадь катода;

h - толщина пленки.

Отсюда h=AItr/FZps.

Подставляя численные значения, получим толщину осажденной на катоде пленки серебра.

 

h= 1,6·10-13 м.



Литература

 

1. Епифанов Е.И., Мома Ю.А. "Физические основы конструирования и технологии РЭА и ЭВА" - М. Сов. радио, 1979г. - 352с.

2. О.В. Митрофанов и др. "Физические остовы функционирования изделий микроэлектроники". Серия "Микроэлектроника" М. Высшая школа 1987г.

3. Гусев В.Г., Гусев Ю.М. "Электроника" - М. Высшая школа 1991г. - 622с.

4. Курс химии / Под ред. А.И. Харина - М. Высшая школа 1983г. - 542с.

5. Грушевский Б.С. "Основы электроники и микроэлектроники" Киев. Высшая школа, 1987г. - 384с.

6. Программа, методические указания и контрольные задания по курсу "Физические основы электронных устройств" / Сост. А.Н. Иванов - Северодонецк, СТИ, 2000 - 48 с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: