Режим отсечки. В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты)

Существуют три схемы включения транзисторов в усилительных каскадах: с общей базой, с общим эмиттером и общим коллектором.

11. Как строится нагрузочная прямая по переменной составляющей по отношению к выбранной точке покоя?

Выбрав рабочую точку покоя А примерно посредине линии нагрузки по постоянному току MN, проводим через точку покоя А линию нагрузки СD по переменному току под углом g, котангенс которого пропорционален результирующему сопротивлению в цепи коллектора по переменному току: ctgg=(a/b)Rн1~, где a − масштабный коэффициент по оси ординат, мА/мм; b − масштабный коэффициент по оси абсцисс, В/мм; Rн1~=(Rк1Rн1)/(Rк1+Rн1), кОм.

12. Чем вызвана необходимость температурной стабилизации усилительного каскада?

Влияние температуры на положение входной характеристики схемы с ОБ при поддержании неизменным ее параметра аналогично ее влиянию на ВАХ полупроводникового диода. В нормальном активном режиме ток эмиттерного перехода можно представить формулой:

 

 

С ростом температуры тепловой ток IЭО растет быстрее, чем убывает экспонента из-за увеличения jТ = kT/q. В результате противоположного влияния двух факторов входные характеристики схемы с ОБ смещаются влево при выбранном токе IЭ на величину ΔU (1...2) мВ/°С (рисунок 4,а).

Начало входной характеристики в схеме с ОЭ определяется тепловым током коллекторного перехода IКБО который сильно зависит от температуры, так что начало характеристики при увеличении температуры опускается (рисунок 4, б).

 


 

 

Рисунок 4—Зависимость входных характеристик от температуры для схем с общей базой (а) и с общим эмиттером (б) Влияние температуры на выходные характеристики схем с общей базой и с общим эмиттером в нормальном активном режиме удобно анализировать по формулам:

 и .

 

Снятие выходных характеристик при различных температурах должно проводиться при поддержании постоянства параметров (IЭ=const в схеме с ОБ и IБ=const в схеме с ОЭ). Поэтому в схеме с ОБ при IЭ=const рост IК будет определяться только увеличением IКБО (рисунок 5, а).

 

Рисунок 5—Зависимость выходных характеристик БТ от температуры для схем включения с общей базой (а) и с общим эмиттером (б)


 

Однако обычно IКБО значительно меньше αIЭ, изменение IК составляет доли процента и его можно не учитывать. В схеме с общим эмиттером положение иное. Здесь параметром является IБ и его надо поддерживать неизменным при изменении температуры. Будем считать в первом приближении, что коэффициент передачи b не зависит от температуры. Постоянство b∙IБ означает, что температурная зависимость IК будет определяться слагаемым (b + 1)IКБО. Ток IКБО (как тепловой ток перехода) примерно удваивается при увеличении температуры на 10°С, и при b >> 1 прирост тока (b + 1)IКБО может оказаться сравнимым с исходным значением коллекторного тока и даже превысить его. На рисунке 5, б показано большое смещение выходных характеристик вверх. Сильное влияние температуры на выходные характеристики в схеме с ОЭ может привести к потере работоспособности конкретных устройств, если не принять схемотехнические меры для стабилизации тока или термостатирование.

13. Какую форму имеет кривая выходного напряжения, если входной сигнал превышает допустимое значение?

Рабочей областью выходных характеристик в режиме усиления является область, ограниченная предельно допустимыми значениями и областями насыщения и отсечки. В этой области характеристики можно считать практически линейными, а транзистор - линейным элементом, т.е. полностью открывается, и он перестает быть управляемым током базы, т.е. переходит в ключевой режим работы.

 


 

Рисунок 6—Амплитудная характеристика

 

14. Какой порядок имеет коэффициент усиления по току, по напряжению и входное сопротивление каскада ОЭ?

При включении с общим эмиттером усиление по току имеет большую величину и происходит без поворота фазы за счёт транзистора. Усиление по напряжению в режиме холостого хода велико и имеет практически такую же величину, как в схеме с общей базой. Однако при реальных сопротивлениях нагрузки усиление по напряжению получается большим, чем в схеме с общей базой, ввиду меньшего по сравнению с этой схемой выходного сопротивления каскада. Передача напряжения осуществляется с вносимым транзистором поворотом фазы на π. Входное сопротивление больше, чем для схемы с общей базой, и значительно меньше, чем для схемы с общим коллектором. Выходное сопротивление меньше, чем для схемы с общей базой, и значительно больше, чем для схемы с общим коллектором.

15. Какой порядок имеет коэффициент усиления по току, по напряжению и входное сопротивление каскада ОК?

Усиление по току имеет большую величину, практически равную усилению в схеме с общим эмиттером, и происходит с поворотом фазы на π за счёт транзистора. Усиление по напряжению отсутствует, а передача напряжения осуществляется без поворота фазы. Входное сопротивление значительно больше, а выходное сопротивление значительно меньше, чем для схем с общей базой и с общим эмиттером. Так как входное напряжение каскада повторяется на выходе, т.е. в эмиттерной цепи, практически без изменения по величине и по фазе, каскад по схеме с общим коллектором носит название эмиттерного повторителя. Такой каскад применяется для преобразования сопротивлений без использования трансформатора.

 




Рисунок 7— принципиальные электрические схемы усилительных каскадов с общим эмиттером (а) и с общим коллектором (б)

Таблица 1— Параметры элементов усилительных каскадов

R R1 R2 R к1 Rэ1 Rг1 Rг2 R3 R4 Rэ2
кОм 22 20 1,3 1 1,1 1,1 18 200 2
 С Ср1 С1р1 Ср2 С1р2 Сэ1 Ср3 С1р3 Ср4 С1р4
мкФ 30 0,05 30 0,05 200 30 0,01 30 0,05

 

Характеристики транзистора КТ312А:

Ik max=30мА; UКЭmax=20В; Pk max=225мВТ; IКБО=0,2 мкА; h21Э=10…100; fmax=80МГц; rБ=900 Ом; rЭ=30 Ом; r*К=30 кОм; β=50; Ск=4 пФ.


 

Рисунок 8—Характеристики транзистора КТ312А с проведёнными линиями нагрузки MN по постоянному току и нагрузки СD по переменному току, а также выбрана точка покоя А

 

Данные для расчёта: Ек=15В, Rн1=1кОм, Rн2=0,2кОм, Сн1=Сн2=0,01мкФ

Проводим линию нагрузки по постоянному току MN, используя выходные характеристики транзистора (рисунок 8). Линия нагрузки MN стоится по двум точкам. Точка N соответствует режиму холостого хода, когда Iк=0, а Uкэ=Ек. Соответственно:

 

Iк=0, Uкэ=Ек=15 В.

 

Точка M соответствует режиму, когда Uкэ=0, Iк=Ек/(Rк1+Rэ1).

Соответственно:

 

Uкэ=0, Iк=Ек/(Rк1+Rэ1)=15/(1,3+1)=6,52 мА.

 

Выбраем рабочую точку покоя А примерно посредине линии нагрузки по постоянному току MN, проводим через точку покоя А линию нагрузки СD по переменному току под углом g, котангенс которого пропорционален результирующему сопротивлению в цепи коллектора по переменному току:

 

ctgg=(a/b)Rн1~;

 

где a—масштабный коэффициент по оси ординат, мА/мм; b—масштабный коэффициент по оси абсцисс, В/мм.

 

Rн1~=(Rк1Rн1)/(Rк1+Rн1), кОм

 

Подставляем данные, получаем соответственно:

 

Rн1~=(Rк1Rн1)/(Rк1+Rн1)=(1,3∙1)/(1,3+1)=0,5652 кОм

 

Подставляем данные а=9мА/мм; b=9В/мм; получаем соответственно:

 

ctgg=(a/b)Rн1~=(9/9)∙0,5652=0,5652

 

Зная ctgg находим g: g=60028/

 

Рисунок 9—Временные диаграммы


 

Определяем графически параметры: Uкп − напряжение на коллекторе в режиме покоя, Iкп − коллекторный ток покоя, Uвыхm − амплитуду неискаженного выходного напряжения.

С учётом масштабных коэффициентов рисунка 9 a1=0,7; b1=0,7:

Напряжение на коллекторе в режиме покоя Uкп=1,986 В,

Коллекторный ток покоя Iкп=4,071 мА,

Амплитуда неискаженного выходного напряжения Uвыхm=5,857 В.

Начертим эквивалентные схемы и рассчитаем основные параметры усилителей по формулам таблицы 2, где Rвх − входное сопротивление каскада с учетом сопротивления делителя RБ, Rвых − выходное сопротивление каскада, Ki=Iн/Iвх − коэффициент усиления по току, KЕ=Uвых/Ег – коэффициент усиления ЭДС Ег источника сигнала, Кu=Uвых/Uвх − коэффициент усиления по напряжению относительно входного напряжения Uвх, Кр=Рвых/Рвх − коэффициент усиления по мощности, знак || означает параллельное соединение резисторов. Результаты расчета занесём в таблицу 3.

 

Рисунок 10—Эквивалентным схемам для переменных составляющих тока и напряжения с общим эмиттером (а) и с общим коллектором (б)

 


 

Таблица 2—Основные параметры усилителей

Параметры усилителя Схема с общим эмиттером Схема с общим коллектором
Rвх Rб1 || rвх1; Rб1=R1 || R2; rвх1=rб+(1+b)rэ Rб2 || [Rн2~(1+b)]; Rб2=R3 || R4
Rвых Rк1 || r ;
Ki ;
Ku
KE
Kp Ki1 Ku1 Ki2 Ku2
Rн~

 

Таблица 3—Результаты расчётов

№ варианта

Схема включения

Результаты

Параметры

Rвх, кОм Rвых, кОм КЕ Ku Ki Kp
1 с общим эмиттером Расчет 1,99 0,8 2,24 2,71 23,14 50,21
1 с общим коллектором Расчет 0,09 0,05 0,06 0,79 0,36 0,28

 

Рассчитаем коэффициент температурной нестабильности S по формуле:

 

 

 

Зная β=50, подставив данные в следующию формулу:


 

 

 

Получим уравнение:

 

 

 

Откуда следует α=0,98.

Подставив данные получаем коэффициент температурной нестабильности S для схемы с общим эмиттером равный:

 

 

 

Подставив данные получаем коэффициент температурной нестабильности S для схемы с общим коллектором равный:

 

 

 

Рассчитаем частоты fн, fв, f0 и углы сдвига фаз jн, jв.

Частоты fн, f0 и fв определяем из приближенных выражений:

Для схемы с общим эмиттером:

 

, ;

где ;

 

Постоянная времени перезаряда конденсатора Ср1:


 

 

Постоянная времени перезаряда конденсатора Ср2:

 

 

Постоянная времени перезаряда конденсатора Сэ1:

 

 

Постоянная времени перезаряда эквивалентной емкости коллекторного перехода:

 

 

Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср1:

 

=(1,1+1,99)∙30=92,7

 

Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср2:

 

=(0,8+1)∙30=54

 

Подставив данные рассчитаем постоянную времени перезаряда конденсатора Сэ1:


 

=

 

 

Подставив данные рассчитаем постоянную времени перезаряда эквивалентной емкости коллекторного перехода:

 

=

 

 

Подставив данные получаем:

 

=1/(92,7-1+54-1+13,43-1)=10

 

Расчитаем частоты fн, f0 и fв определять из приближенных выражений:

 

, ;

fн1=1/2πτн1=1/2∙3,14∙10=0,016 МГц

fв1=1/2πτв1=1/2∙3,14∙0,64=0,25 МГц

МГц

 

Для схемы с общим коллектором:

 

, , ;

где ;


 

Постоянная времени перезаряда конденсатора Ср3

 

 

Постоянная времени перезаряда конденсатора Ср4

 

 

Постоянная времени перезаряда конденсатора нагрузки Сн2.

 

Сн2

 

Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср3:

 

=(1,1+0,09)∙30=35,7

 

Подставив данные рассчитаем постоянную времени перезаряда конденсатора Ср4:

 

=(0,05+0,2)∙30=7,5

 

Подставив данные рассчитаем постоянную времени перезаряда эквивалентной емкости коллекторного перехода:

 

=

 


 

Подставив данные получаем:

 

=1/(35,7-1+7,5-1)=6,2

 

Расчитаем частоты fн, f0 и fв определять из приближенных выражений:

Для схемы с общим коллектором:

 

, , ;

fн2=1/2πτн2=1/2∙3,14∙6,2=0,026 МГц

fв2=1/2πτв2=1/2∙3,14∙0,0004=398,09 МГц

МГц

 

Расчитаем углы сдвига фаз jн, jв по следующим формулам:

 

, .

 

Для схемы с общим эмиттером:

 

 

 

 

Для схемы с общим коллектором:

 

 

 .


 

Рассчитаем и построим частотные KE(f) и фазовые j(f) характеристики усилителей.

При расчете зависимостей  и  следует задаваться частотами f=(0,2; 0,5; 1; 2; 5) fн и f=(0,2; 0,5; 1; 2; 5) fв.

 

Таблица 4—Результаты расчётов для φ(f)

φн1(f) 1,37 1,1 0,75 0,36 -0,12
f от fн1 0,0032 0,008 0,016 0,032 0,08
φв1(f) 0,12 -0,36 -0,75 -1,1 -1,37
f от fв1 0,05 0,125 0,25 0,5 1,25
φн2(f) 1,25 0,87 0,47 0,1 -0,38
f от fн2 0,0052 0,013 0,026 0,052 0,13
φв2(f) 0,12 -0,35 -0,75 -1,1 -1,37
f от fв2 79,618 199,045 398,09 796,18 1990,45

 

Таблица 4—Результаты расчётов для КЕ(f)

КЕ1(f) 0,44 1,01 1,64 2,1 2,22
f от fн1 0,0032 0,008 0,016 0,032 0,08
КЕ1(f) 2,22 2,1 1,64 1,02 0,44
f от fв1 0,05 0,125 0,25 0,5 1,25
КЕ2(f) 0,02 0,04 0,05 0,06 0,06
f от fн2 0,012 0,027 0,042 0,054 0,059
КЕ2(f) 0,059 0,054 0,042 0,027 0,012
f от fв2 79,618 199,045 398,09 796,18 1990,45

 

Построим частотные KE(f) и фазовые j(f) характеристики усилителей.

 


 

Рисунок 11—Фазовые j(f) характеристики усилителей (масштаб для f: φн1(f)=100:1, φв1(f)=10:1, φн2(f)=100:1, φв2(f)=1:200)

 

Рисунок 12—Частотные KE(f) характеристики усилителей (масштаб для: KE (f н1)=2:1, KE(f в1)=2:1, KE(f н2)=200:1, KE(f в2)= 200:1, f н1=100:1, f в1=10:1, fн2=100:1, f в2= 1:200)

 

Рассчитаем коэффициенты частотных искажений Мн и Мв.

Коэффициенты частотных искажений определяем из выражений:

Для схемы с общим эмиттером:


 

,

где ;

;

, ;

, ωв1=2πfв1.

 

Согласно формулам производим расчёты:

 

ωв1=2πfв1=2∙3,14∙0,25=1,57;

ωн1=2πfн1=2∙3,14∙0,0016=0,01;

 

Для схемы с общим коллектором:

 

,

где ;

, ;

, .

 

Согласно формулам производим расчёты:


 

ωв2=2πfв2=2∙3,14∙398,09=2505;

ωн2=2πfн2=2∙3,14∙0,026=0,16;

 


 

Литература

 

Жаворонков М.А. Электротехника и электроника. – М.: Академия, 2005.

Новиков Ю.Н. Электротехника и электроника. – СПб.: Питер, 2005.

Касаткин А.С. Курс электротехники. – М.: Высшая школа, 2005.

Миловзоров О.В. Электроника. – М.: Высшая школа, 2005.

Бройдо В.Л. Вычислительные системы, сети телекоммуникации. - СПб.: Питер, 2005.

Хамахер К. Организация ЭВМ. – СПб.: Питер, 2003.

Безладнов Н.Л. Усилительные устройства.—Л.: СЗПИ,1971.

Войшвилло Г.В. Усилительные устройства.—М.: Радио и связь,1983.

Павлов В.М., Ногин В.Н. Схемотехника аналоговых электронных устройств.—М.: Радио и связь, 1997.

 















Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: