Радиолокационные станции следящего типа

 

Общие сведения.

Обзорные РЛС не обеспечивают получения информации, необходимой для решения некоторых практических задач непрерывного измерения координат цели, имеют низкий темп выдачи информации. Применение режима слежения позволяет измерять координаты целей с повышенной точностью и непрерывную выдачу их значений. РЛС следящего типа осуществляют слежение за угловыми координатами целей, а также за их дальностью или радиальной скоростью. В некоторых случаях, например в импульсно-доплеровских РЛС, возможно слежение за всеми перечисленными параметрами положения и движения цели. В соответствии со своим назначением РЛС следящего типа именуются также координатами.

Одноканальные СИН с коническим сканированием луча. Коническое сканирование создается с помощью осесимметричного иглообразного луча путем его вращения, при котором ось симметрии ДН описывает в пространстве конус (рис. 1). Вращение диаграммы направленности излучаемой энергии с частотой W осуществляется двигателем ДВ, вращающим параболический отражатель (или вибратор) антенны так, что ось максимума излучаемой энергии описывает в пространстве конус. Телесный угол конуса должен быть меньше удвоенного угла раствора луча. Вращение отражателя из конструктивных соображений применяется при сравнительно небольших диаметрах зеркала. При вращении вибратора необходимо подвижное волноводное сочленение, которое менее удобно, но необходимо при сравнительно больших диаметрах зеркала. Для образования конического сканирования диаграммы вращением отражателя оптическая ось параболического отражателя смещается на некоторый угол относительно оси вращения. При образовании же конуса вращением вибратора соответственно смещается облучатель относительно оптической оси отражателя.

Частота вращения луча, или частота сканирования WK, лежит обычно в пределах 25—80 периодов в секунду. Стабильность частоты вращения луча обеспечивается автоматической стабилизацией скорости вращения двигателя ДВ. При сканировании диаграммы образуется равносигнальное направление.

Равносигнальным направлением называется такое направление в пространстве, на котором амплитуды импульсов, отраженных от объекта, не изменяются при вращении диаграммы направленности. Это направление совпадает с осью, относительно которой вращается максимум излучения.

Нетрудно видеть, что ось вращения является РСН, так как амплитуда сигналов, принимаемых с этого направления, не зависит от текущего положения сканирующего луча. Угол при вершине конуса выбирается малым (соизмеримым с шириной ДН) так, чтобы сигналы, поступающие с РСН, имели достаточно высокий уровень. При смещении цели от РСН возникает амплитудная модуляция принимаемых сигналов

 

S(t)=А[1+Mcos(їt-ц)]cos(щt+ш) (3)

 

где A, щ, ш—соответственно амплитуда, частота и начальная фаза несущего колебания; ї - частота сканирования; М—коэффициент модуляции; ц — начальная фаза огибающей модуляции. Коэффициент модуляции М=мг где м - параметр антенны,г - угловое рассогласование, несет информацию о степени отклонения цели от равносигнального направления, а фаза ц— о стороне отклонения.

Ясно, что информация об угловых координатах из сигнала (3) может быть извлечена в результате последовательного сравнения значений его амплитуды. Существенно, что время этого анализа не может быть меньше периода сканирования Т=2р/ї.

Принятый сигнал S(t) отфильтровывается от помех и усиливается в супергетеродинном приемнике координатора. Приемник охвачен АРУ, постоянная времени которой выбирается больше периода сканирования луча антенны T. Такая схема АРУ исключает зависимость амплитуды на выходе приемника от интенсивности принимаемых сигналов, но не подавляет модуляцию сигналом рассогласования. Амплитудный детектор приемника (АД) выделяет огибающую амплитудной модуляции-сигнал рассогласования Sp. В импульсных РЛС на выходе АД имеет место последовательность видеоимпульсов, модулированная по амплитуде сигналом рассогласования. Детектор сигнала рассогласования — ДСР (пиковый детектор) преобразует импульсный сигнал в непрерывный. С учетом нормирующего действия АРУ

 

Sp(t)=АоMcos(їt-ц), (4)

 

где Ао - константа.

Амплитуда Ао и фаза ц сигнала рассогласования (4) определяют направление на цель относительно РСН в полярных координатах. Управление положением антенны производится в двух взаимно перпендикулярных плоскостях, т.е. в декартовых координатах. Поэтому сигнал рассогласования в фазовых детекторах (ФД) раскладывается на две ортогональные составляющие, которые используются для управления положением антенны в горизонтальной и вертикальной плоскостях.

На входы ФД поступают сигналы рассогласования и опорные-напряжения, имеющие фазовый сдвиг на р/2:

 

U1(t)=Ucosїt,

U2(t)=Usinїt.


 

 


Рис. 2. Схема РЛС автоматического сопровождения цели

 

Опорные напряжения вырабатываются генератором опорных напряжений — ГОН, механически сопряженным с приводом вращения облучателя зеркала антенны. Фазовый сдвиг опорных напряжений на р/2 создается в фазовращателе. Фаза опорных напряжений однозначно связана с фазой сканирующего в пространстве луча. На выходе ФД образуются напряжения рассогласования, пропорциональные величинам углового рассогласования, а в горизонтальной плоскости и в в вертикальной плоскости

 

Ux=Uoб, Uy=Uoв (5)

 

где Uo постоянная величина.

В каналах управления антенной напряжения рассогласования (5) усиливаются и поступают на двигатели электропривода, поворачивающие антенну в горизонтальной и вертикальной плоскостях соответственно. Антенна перемещается в положение, в котором РСН совмещается с направлением на цель. При этом Ux→0 и Uy→0.

Коническое сканирование на сантиметровых волнах создается с помощью параболической антенны, облучатель зеркала которой быстро вращается в фокальной плоскости по окружности малого радиуса с помощью электромеханического привода. При малых размерах отражателя сканирование создается с помощью наклонного сбалансированного зеркала, вращающегося вокруг неподвижного облучателя. Благодаря этому упрощается конструкция СВЧ-части антенны и устраняется нежелательное вращение плоскости поляризации, присущее первому способу. Частота сканирования обычно составляет несколько десятков герц. Антенна, приемник СИН с коническим сканированием имеют более простую конструкцию по сравнению с моноимпульсными измерителями лучшие массо-габаритные показатели и меньшую стоимость. Для измерения направления в двух взаимно перпендикулярных плоскостях в таких СИН достаточно одного приемного канала. К элементам и узлам антенны и приемника предъявляются умеренно жесткие требования к точности и стабильности.

Наряду с достоинствами, одноканальным СИН присущи недостатки. Главным из них является наличие модуляционных погрешностей, обусловленных внешней амплитудной модуляцией принимаемых сигналов. Такая модуляция приводит к образованию ложного сигнала рассогласования на выходе приемника и, как следствие, к погрешностям измерения угловой координаты. В отличие от многоканальных СИН в одноканальном измерителе модуляционная помеха не может быть полностью устранена. В самом деле, модуляция с частотой, близкой Ω, не подавляется инерционным АРУ приемника. Вследствие близости частот истинного и ложного сигналов рассогласования они не могут быть разделены также с помощью фильтров.

Управляющее напряжение представляет собой напряжением постоянного тока, значение которого определяет величину угла, а знак — направление поворота антенны в данной плоскости.

Из выраженийU1(t)=Ucosїt,U2(t)=Usinїt следует, что управляющее напряжение данного канала равно нулю, когда напряжение ошибки равно нулю или имеет максимальное значение в другом канале.

Управляющее напряжение поступает на усилитель следящей системы канала и после усиления по мощности в виде напряжения U1 подается на стабилизирующий двигатель СД. Исполнительные двигатели каналов через редукторы управляют положением головки антенны одновременно в двух взаимно перпендикулярных плоскостях. В результате антенна при возникновении сигнала ошибки перемещается по азимуту и наклону до совмещения равносигнального направления с направлением на объект. Поскольку объект, например самолет, непрерывно перемещается, система следит, непрерывно поворачивая антенну на некоторый угол.

Следящая система управления антенной в радиолокационной станции автоматического сопровождения по направлению — двухканальная связанная. Управление положением антенны производится раздельно по двум каналам. Система имеет общие для двух каналов сигнал ошибки и выход (положение антенны).

Электроавтоматическая часть станций автоматического сопровождения по направлению — одна из наиболее сложных и совершенных. Кроме электроавтоматики, связанной непосредственно с управлением антенны по угловым координатам, станции такого типа имеют системы, обеспечивающие автоматическое регулирование частоты сканирования диаграммы направленности, автоматического сопровождения по дальности АСД и вычислительные устройства

Естественные флуктуации амплитуды отраженного сигнала проявляются в СИН как эквивалентные флуктуации углового положения цели. Возникающие таким образом модуляционные погрешности снижают точность измерителя. Преднамеренная активная помеха, модулированная по амплитуде с частотой сканирования ї, может полностью нарушить работоспособность одноканального СИН. Существуют также другие специфические факторы, снижающие точность СИН с коническим сканированием. Однако, несмотря на отмеченные недостатки, одноканальные СИН имеют достаточно широкое распространение. В частности, они применяются в пассивных радиолокационных головках самонаведения ракет. Для таких, безвозвратно теряемых при практическом использовании устройств простота аппаратуры и хорошие экономические показатели одноканальных СИН имеют первостепенное значение. Решению проблемы помехозащищенности в этом случае способствует скрытность работы пассивных бортовых РЛС.




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: