Микромир, макромир, принцип квантования, дуализм волна-частица, принцип неопределенностей,вероятность

 

.Приведите примеры физических явлений, при которых происходит непрерывное изменение а) потенциальной энергии, б) кинетической энергии.

2.Перечислите основные особенности поведения электрона в атоме. Чем поведение электрона отличается от поведения любого физического тела?

3.Как вы думаете, где можно провести границу между микромиром и макромиром?

4.В каких случаях при переходе электрона в атоме из одного состояния в другое энергия выделяется, а в каких – поглощается?

5.Разделите следующие утверждения на три группы: а) достоверно, б) вероятно, в) невозможно.

* Земля вращается вокруг Солнца.

* Земля вращается вокруг Марса.

* Автобус подойдет к остановке в течение ближайшей минуты.

* Завтра будет дождь.

* Завтрашний день будет солнечным.

* Первый человек, встреченный вами завтра на улице, будет мужчина.

Попытайтесь оценить вероятность этих событий.

6.2. Орбитали. Квантовые числа

Необычные свойства электрона, его двойственная природа, особый характер движения не укладываются в рамки классической механики. Поведение электрона и других микрочастиц изучает квантовая  или волновая механика.

В квантовой механике поведение электрона описывается довольно сложным уравнением, которое называется волновым уравнением  или уравнением Шрёдингера  (по имени Эрвина Шрёдингера – австрийского физика, предложившего это уравнение в 1926 году). Точное решение уравнения Шрёдингера возможно только для системы из двух частиц, например, для атома водорода. Для более сложных атомов уравнение решается приближенно с использованием ЭВМ. Решая уравнение Шрёдингера, можно найти возможные состояния электрона в атоме (атомныеорбитали, АО).

 

 Атомная орбиталь – одно из многих возможных состояний электрона в атоме.  

Чтобы избежать громоздких приближенных вычислений, часто применяют упрощенную модель атома, которая называется " одноэлектронное приближение ". В рамках этой модели предполагается, что каждый электрон ведет себя в атоме независимо от остальных электронов этого атома – тогда решение уравнения Шрёдингера сильно упрощается. В химии в большинстве случаев бывает достаточно этой простейшей модели, поэтому ее чаще всего и используют.

Составив уравнение Шрёдингера для какого-нибудь атома и решив его, можно определить, какие состояния возможны для электрона в данном атоме (в рамках модели "одноэлектронное приближение "эти состояния и называют орбиталями). Затем можно вычислить, какой энергией обладает электрон в каждом из этих состояний, а также найти и другие, очень важные характеристики атома. С некоторыми из них мы еще познакомимся.

Уравнение Шрёдингера можно составить не только для атома, но и для молекулы (системы, состоящей из нескольких атомных ядер и электронов). Решая такое уравнение, можно найти возможные состояния электрона не в отдельном атоме, а в молекуле (правда, расчеты в этом случае очень сложны, трудоемки и, естественно, приближенны). Эти состояния тоже называются орбиталями, но в отличие от орбиталей атома – атомных орбиталей их называют молекулярными орбиталями (МО). 

 

 Молекулярная орбиталь – одно из многих возможных состояний электрона в молекуле.  

Чтобы найти возможные состояния электрона в атоме, нам не обязательно составлять и решать уравнение Шрёдингера. Эта работа проделана во второй четверти ХХ века как самим Шрёдингером, так и многими его последователями. В соответствии с этим уравнением каждая атомная орбиталь однозначно характеризуется набором из трех целых чисел, которые называются квантовыми числами. Числа эти получили особые названия и обозначения:

главное квантовое число  – n,

орбитальное квантовое число  – l  и

магнитное квантовое число  – m.

Так как не все состояния электрона в атоме возможны, то и сочетания этих чисел могут быть отнюдь не любые, а только те, которые удовлетворяют следующим трем правилам.

Главное квантовое число (n) может принимать любые целочисленные положительные значения:

    n = 1, 2, 3, …,

Орбитальное квантовое число (l) может принимать любые целочисленные значения от нуля до n  – 1:

l = 0, 1, 2, …, (n – 1).

Магнитное квантовое число (m) может принимать любые целочисленные значения от – l до + l, включая ноль:

m = – l, …, –1, 0, +1,…,+ l.

Рассмотрев последовательно возможные наборы квантовых чисел, выясним, в каких состояниях может находиться электрон в атоме (то есть, какие АО возможны).

Пусть главное квантовое число n = 1, тогда орбитальное квантовое число l = 0 и магнитное квантовое число m = 0, и только нулю. Таким образом, при n = 1 возможна только одна АО.

При n = 2 орбитальное квантовое число l может уже принимать два значения: 0 и 1, но не больше. Каждому из этих значений соответствуют свои возможные значения m: при l  = 0 магнитное квантовое число тоже равно только нулю, а при l = 1 магнитное квантовое число может принимать уже три значения: –1, 0 и 1. Таким образом, при n = 2 мы получаем следующие наборы квантовых чисел:

 

  n = 2   n = 2   n = 2   n = 2  
l = 0   l = 1   l = 1   l = 1  
m  = 0   m  = –1   m  = 0   m  = 1  

и всё, никакие другие наборы квантовых чисел при n = 2 невозможны. Следовательно, число АО при n = 2 равно четырем.

Рассуждая аналогично, мы можем получить и другие АО. Результат приведен в первых четырех столбцах таблицы 13. Эта таблица может быть продолжена и для других значений главного квантового числа.

Набор атомных орбиталей определяется ограничениями, наложенными на значения квантовых чисел.

Используя квантовые числа, мы можем "назвать "полученные орбитали, то есть приписать каждой из них свой символ. Символ АО состоит из цифры и строчной латинской буквы, например: 2 s, 3 p, 4 f. Цифра соответствует главному квантовому числу, а буква символизирует значение орбитального квантового числа по следующему правилу: l = 0 соответствует буква s, l = 1 соответствует буква p, l = 2 – буква d, l = 3 – буква f и далее по алфавиту. Например:

1 s -АО обозначает орбиталь с n = 1 и l = 0;

2 p -АО обозначает орбиталь с n = 2 и l = 1;

3 d -АО обозначает орбиталь с n = 3 и l = 2.

Символы орбиталей приведены в последней колонке таблицы 13.

Те же символы используются и для обозначения электронов, находящихся на этих орбиталях, то есть, в этих состояниях:

2 p -электрон – электрон на 2 p -АО,

4 f -электрон – электрон на 4 f -АО и т. д.

Поведение электрона на орбитали зависит еще от одной его необычной характеристики, называемой спином. Эта специальная (не имеющая аналогов в макромире) характеристика микрочастиц, определяющая их магнитные свойства. Для ее учета используется четвертое квантовое число – спиновое. Оно обозначается буквой s. У разных частиц спиновое квантовое число бывает разным, но для электрона оно может принимать только два значения: s = 1/2 и s = –1/2.

Таким образом, электрон в атоме полностью и однозначно характеризуется четырьмя квантовыми числами (n, l, m и s), три из которых (n, l и m) характеризуют орбиталь этого электрона, а четвертое (s) – его спин

Таблица 13. Наборы значений квантовых чисел для различных АО

 

n     l   m   Число АО   Обозначение АО  
1   0   0   Одна   1 s  
2   0 1   0 –1, 0, 1   Одна Три   2 s 2 p  
3   0 1 2   0 –1, 0, 1 –2, –1, 0, 1, 2   Одна Три Пять   3 s 3р 3 d  
4   0 1 2 3   0 –1, 0, 1 –2, –1, 0, 1, 2 –3, –2, –1, 0, 1, 2, 3   Одна Три Пять Семь   4 s 4p 4d 4 f  

В дальнейшем мы с вами будем использовать обозначения атомных орбиталей, приведенные в последней колонке таблицы 13.

 

АТОМНАЯ ОРБИТАЛЬ, МОЛЕКУЛЯРНАЯ ОРБИТАЛЬ, КВАНТОВЫЕ ЧИСЛА.

 

   1.Составьте символы атомных орбиталей, для которых а) n = 2, l  = 0; б) n  = 3, l = 0; в) n = 3, l =

2.Какие значения n и l соответствуют а) 4 s -АО, б) 4 р -АО, в) 5 d АО, a) 6 p- АО?

3.Сколько в атоме s -орбиталей, р -орбиталей, d -орбиталей?

4.Сколько в атоме 2 р -орбиталей, 3 s -орбиталей, 4 d -орбиталей, 4 f -орбиталей? Докажите, что их именно столько.

5.Сколько орбиталей атома имеют символ 5 p, 6 s, 4 d, 5 f? Каким квантовым числом отличаются орбитали с одинаковым символом?

6.Среди приведенных наборов квантовых чисел n, l и m выберите те, которым соответствуют АО. Укажите символы этих АО: а) n = 2, l = 0, m = 0; б) n = 3, l = 3, m = 1; в) n = 2, l = 1, m = 2; г) n = 3, l = 2, m = – 1; д) n = 3, l = 0, m = 2; е) n = 3, l = 1, m  = 0.

6.3. Энергия атомных орбиталей. Электронные уровни и подуровни

   

Узнав, какие орбитали возможны в атоме, постараемся теперь выяснить, какова их энергия, ведь роль энергии во всех процессах, протекающих во Вселенной, очень велика. Это относится и к микромиру, и к Космосу.

 

 Энергия АО – энергия электрона, находящегося на этой орбитали (то есть в этом состоянии).  

Энергия АО (Е АО) может быть как рассчитана из уравнения Шрёдингера, так и определена экспериментально, что давно уже сделано для атомов практически всех элементов. Но при изучении химии эти точные абсолютные значения используются редко. Обычно бывает достаточно знать, энергия какой орбитали больше, а какой меньше, а также, сильно или слабо различаются по энергии соседние орбитали. Такую информацию дает, например, рис. 6.3, где на оси энергии нанесены значения энергии орбиталей атома менделевия (одного из последних элементов, электронное строение атома которого определено экспериментально), как занятых электронами, так и некоторых свободных. Значения нанесены на ось без строгого соблюдения масштаба, так как при увеличении главного квантового числа разница между значениями энергии АО уменьшается очень сильно, поэтому сделанный в масштабе рисунок был бы ненагляден. Есть и еще одна причина, по которой эту шкалу обычно изображают без соблюдения масштаба: по мере возрастания заряда ядра энергия одних и тех же орбиталей существенно уменьшается, но при этом общая закономерность распределения орбиталей по энергии остается неизменной. Изображенная на рис. 13 шкала точнее отражает одну из уже известных нам особенностей поведения электрона в атоме (сравни с рис. 11).

Как видите, последовательность состояний довольно сложная. Обычно для большей наглядности получившуюся шкалу несколько видоизменяют. Обратите внимание, что энергия АО зависит от n и от l, поэтому кроме оси Е АО вводят еще одну ось. Чаще всего это ось l. На получившемся поле отмечают положение энергии различных орбиталей, но не точками, а маленькими квадратиками, так называемыми " квантовыми ячейками". При этом, кроме увеличения наглядности, появляется возможность показать число разных орбиталей с одинаковой энергией.

 

 Квантовая ячейка – символическое изображение орбитали на энергетической диаграмме.  

Рядом с квантовыми ячейками обязательно обозначают символы орбиталей. В результате получается так называемая энергетическая диаграмма атома.

Энергетическая диаграмма может отражать электронное строение реального атома, тогда на ней показывают положения электронов (как это делается мы подробно разберем в параграфе 6.5). Но можно составить энергетическую диаграмму так, чтобы показать последовательность энергий еще не занятых электронами орбиталей – для произвольного многоэлектронного атома такая диаграмма приведена на рис. 6.4.

 

 

В случае атома водорода, у которого – только один электрон, картина сильно упрощается. Как видно из энергетической диаграммы (рис. 6.5), у атома водорода энергия орбитали зависит только от главного квантового числа n.

От магнитного квантового числа m энергия орбитали не зависит, на энергетической диаграмме орбитали с одинаковыми n и l, но с разным магнитным квантовым числом m, имеющие одинаковую энергию, группируются вместе, образуя электронный подуровень (ЭПУ) (см. рис. 6.4).

Число орбиталей на любом ЭПУ равно числу возможных значений m (см. табл. 13). Так, 2 p -, 3 p -, 4 p - и других орбиталей p-подуровней – по три, а 3 d -, 4 d -, 5 d - и других d -орбиталей – по пять. В общем случае число орбиталей на любом подуровне равно 2 l + 1.

Поскольку все орбитали подуровня имеют одинаковый символ, тем же символом обозначают и сам подуровень. Так, 1 s -подуровень (1 s -ЭПУ) образован одной 1 s -АО, а 4 f -ЭПУ – семью 4 f -АО.

 

На энергетической диаграмме условно принято располагать орбитали по возрастанию магнитного квантового числа, например, для 3 d -ЭПУ

 

                    3 d  
–2   –1   0   +1   +2      

левая квантовая ячейка символизирует орбиталь с m = –2, следующая – с m = –1 и далее до m = 2.

 

Подуровни с одинаковым значением главного квантового числа объединяют в электронные уровни (ЭУ).

 

 Электронный уровень – совокупность орбиталей с одинаковыми значениями главного квантового числа.  

Так, 2 s - и 2 р -подуровни образуют второй электронный уровень; 3 s -, 3 p - и 3 d -подуровни образуют третий электронный уровень.

 

 Электронный подуровень – совокупность орбиталей одного уровня с одинаковыми значениями орбитального квантового числа.  

На энергетических диаграммах, показанных на рис. 6.4 и 6.5, подуровни одного уровня соединены прямыми линиями. В случае атома водорода эти линии горизонтальны, а в случае многоэлектронного атома – наклонны. Полезно знать, что число подуровней на одном уровне равно номеру этого уровня (то есть главному квантовому числу n), а число орбиталей на том же уровне равно n 2.

Иногда электронные уровни называют "энергетическими уровнями". Это устаревшее, но все еще часто употребляемое название справедливо для атома водорода, но совершенно не отражает характер электронных оболочек многоэлектронных атомов (энергия атомных орбиталей одного электронного уровня у них разная). Именно при изучении электронной структуры атома водорода (простейшего атома!) это название и возникло.

Точно так же электронные подуровни иногда называют "энергетическими подуровнями". Это название допустимо, так как отражает реальность: в пределах подуровня у любого атома энергии АО действительно равны. Но для того, чтобы не создавать лишней путаницы, его не стоит употреблять.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: