Производственный модуль

 

Повышение уровня автоматизации машиностроительного производства приводит к созданию ПМ, включающих в себя автоматизированную единицу технологического оборудования для изготовления изделий определенного вида с возможностью изменения в заданном диапазоне их типоразмерных характеристик. ПМ функционирует автономно, осуществляя многократные циклы, и может встраиваться в ГПС. В ПМ дополнительно обеспечивается автоматическое измерение и контроль качества изготавливаемых изделий, диагностика состояния инструментов, механизмов и устройств самого оборудования, а также автоматическая подналадка технологического процесса и автоматическая переналадка оборудования на изготовление другого типоразмера изделия. ПМ можно рассматривать как разновидность РТК с более высоким уровнем автоматизации всех вспомогательных, контрольно-измерительных и диагностических операций, с элементами адаптивного управления.

Производственный модуль (ПМ) состоит из единицы технологического оборудования, оснащенного ЧПУ и средствами автоматизации технологического процесса.

В общем случае в состав станочного модуля – ПМ входят:

- станок с ЧПУ;

- средства автоматической загрузки-выгрузки станка;

- транспортно-накопительная система;

- магазин инструментов и устройство их автоматической смены;

- устройства автоматического контроля размеров обработанных деталей;

- устройство контроля размеров режущего инструмента;

- система опознавания заготовок;

- система контроля за состоянием процесса резания;

- механизм автоматической смены элементов зажимных приспособлений.

На рис. 1 показан станочный модуль фирмы EMAG, выполненный на базе двух-шпиндельного токарного станка 4 с ЧПУ. Станок имеет механизированные приводы зажимных патронов, ограждения и соответствующие датчики для получения необходимых сигналов о состоянии оборудования, наличии заготовок и т д.

В состав модуля входит ПР 1, оснащенный четырьмя манипуляторами и предназначенный для загрузки - разгрузки станка. ПР способен одновременно взять с транспортно-накопительной системы 6 две заготовки и снять с двух шпинделей станка 4 две обработанные детали.

Рис.1. Гибкий производственный модуль фирмы EMAG

 

Кроме того, ПР устанавливает заготовку на призму поворотного стола 5, где она кантуется и одновременно контролируется, что позволяет сократить вспомогательное время. Наличие магазина 3 инструментов и устройства 2 их автоматической смены (в случае износа или поломки резца) обеспечивает работу модуля в течение значительного интервала времени (например, в течение двух смен) без участия обслуживающего персонала.

Требования к ГПМ, работающего в режиме безлюдной технологии

В ГПС для многономенклатурного мелкосерийного производства ГПМ оснащают широким набором дополнительных устройств, увеличивающих их гибкость. ГПМ, работающие в режиме безлюдной технологии, должны отвечать ряду специальных требований, которые можно разделить на основные и дополнительные.

Например, токарным ГПМ предъявляют следующие основные требования:

- управление от ЭВМ,

- наличие магазина инструментов,

- конвейера для сбора стружки,

- автоматический зажим и разжим заготовок в патроне станка.

К дополнительным требованиям относятся:

- возможность автоматической переналадки патрона по программе,

- регулировки по программе силы зажима заготовки определяемого жесткостью заготовки и силами резания,

- автоматической корректировки УП при изнашивании режу­щего инструмента и т.д.

Аналогичным требованиям должны отвечать и ГПМ на базе многоцелевых сверлильно-фрезерно-расточных станков. Кроме этого, такие ГПМ должны отвечать специфическим требованиям:

- наличие магазинов приспособлений-спутников,

- многошпиндельных головок,

- возможность замены комплектов инструментов или целиком инструментальных магазинов;

- замена тары для стружки, емкостей дляСОЖ при переходе на обработку различных материалов;

- очистка от стружки опорных поверхностей спутников и позиционных приспособлений;

- корректировка положения заготовки в спутнике и т.д.

Обязательным требованием к ГПМ является возможность его встраивания в ГПС. Поэтому он должен иметь стандартные сопрягающие устройства для стыковки с автоматическими транспортно-складскими системами (АТСС), с центральной ЭВМ, а также отдельными системами ЧПУ станков, ПР и транспортных устройств. ГПМ создают на основе модульного принципа.

Агрегатно-модульный принцип построения ГПС

ГПС строятся по агрегатно-модульному принципу, что имеет ряд преимуществ.

Рассмотрим последовательность создания ГПС.

На рис. 2 приведены стандартные узлы, на базе которых строятся горизонтальные ГПМ в зависимости от конкретных требований заказчика. Некоторые узлы являются общими для всей гаммы, другие относятся только к определенным ее типоразмерам. На рис. 3 показан ГПМ для сверлильно-фрезерно-расточных работ, построенный по агрегатно-модульному принципу с использованием стандартных узлов (см. рис. 2).

По мере необходимости возможно наращивание количества модулей в ГПС, добавляются станки, станции хранения палет, увеличивается длина транспортера и устанавливается контроллер управления участком. Стандартные узлы относятся к основным узлам ГПМ, определяющим производительность и точность обработки. Элементы систем управления (системы ЧПУ, различные датчики, электрошкафы и др.), шпиндельные узлы, комплекты приспособлений и загрузочные устройства встраиваются в станки при проектировании их по каталогам и покупаются у специализированных предприятий. На современном уровне серьезный станкостроительный завод имеет свои стандартные узлы.

При создании ГПМ следовательно и ГПС (например, зажимные приспособления), используется агрегатно-модульный принцип.

 

Рис. 2. Гамма стандартных узлов для построения ГПМ:

1 — литая стойка; 2 — шпиндель (конус 50, мощность 50 или 60 кВт, 6500 об/мин); 3 — шпиндель (конус 50, мощность 50 кВт, 10000 об/мин); 4 — шпиндель (конус 50, мощность 50 кВт, 15000 об/мин); 5 — защитный экран с пультом управле­ния; 6 — стенка по осям X— Устанка; 7 — квадратные, прямоугольные паллеты (по стандарту ИСО); 8 — устройства автоматической смены паллет вместе с обрабатываемой деталью (гибкие, модульные, многопозиционные карусельного типа); 9 — дополнительный контроллер участка; 10 — дополнительный автома­тизированный участок загрузки паллет; 11 — перестраиваемые стойки для пал­лет или станции загрузки-выгрузки; 12 — типовое устройство для смены паллет (до шести стоек) или станций загрузки-выгрузки; 13 — ограждение для рабочей зоны; 14 — механизм автоматической смены инструмента, устанавливаемый сверху; 15 — накопители инструмента на 45—180 шт.; 16 — литоечугунное снование

 

На рис. 4 представлена компоновка отечественного ГПМ "Модуль 500" созданного на базе многоцелевого станка ИР-500МФ4, оснащенного дополнительным накопителем 5 приспособлений-спутников.

Для обеспечения автоматической работы станочного модуля в течение полутора-двух смен перед станком устанавливают многоместные загрузочные устройства (накопители) для спутников. Для передачи спутников на станок из позиций неподвижного накопителя применяют схему с использованием

Рис. 3. Использование стандартных узлов при построении ГПМ:

1 — автономная станция загрузки-выгрузки паллет с деталями;2 — модульный механизм смены паллет с обрабатываемой деталью; 3 — автономные стойки для установки паллет; 4 — поворотный стол; 5 — магазин инструментов с возмож­ностью увеличения емкости от 45 до 180 шт.; 6 — цифровые серводвигатели переменного тока с адаптивной настройкой; 7 — шпиндель (конус 50, мощность 50 кВт); 8 — стойка с линейными роликовыми направляющими; 9 — шкаф для кондиционирования воздуха; 10 — УЧПУ; 11 — устройство подачи паллет на обработку; 12 — сдвоенный винтовой транспортер стружкидвух-позиционного перегружателя (каретки-оператора) (рис. 5, а)

Рис. 4. Компоновка ГПМ "Модуль-500" на баземногоцелевого станка ИР-500 МФ4:

I ~ станок; 2 — шкаф электрооборудования; 3 - система управления измерением параметров обработки; 4 - устройство ЧПУ; 5 - накопитель спутников; 6 - устройство смены спутников; 7 — спутник; 8 — кассета с инструментом

 

Наличие перегружателя позволяет свести к минимуму время простоя станка. Загрузочное устройство карусельного типа (рис. 5, б) осуществляет передачу и прием спутников через одну позицию, расположенную перед станком. Загрузочное устройство с подвижными позициями обеспечивает передачу и прием спутников с двух различных позиций, расположенных вдоль оси. Установка на спутниках различных деталей предусматривает наличие системы автоматической идентификации (распознавания) спутников. С этой целью на спутники устанавливают кодовые гребенки или другие кодовые элементы, по которым датчик на исходной позиции, определяет наличие соответствующего спутника с определенной заготовкой и дает команду на вызов требуемой управляющей программы и подготовку необходимого инструмента.

В ГПС накопители для спутников связаны между собой гибкой транспортной системой. Автоматическая тележка-оператор, управляемая от ЭВМ,

 

Рис. 5. Многоместные загрузочные устройства для спутников многоцелевых станковобеспечивает передачу требуемой детали со спутником на другой модуль, на склад, на моечную или на координатно-измерительную машину (КИМ).


 


Модуль АСУ ГПС

В систему управления (СУ) ГПС входят аппаратные и программные средства. Управление ГПС осуществляется на основе ЧПУ мини- и микро-ЭВМ, микропроцессорами и программируемыми командоаппаратами. Система управления, как правило, имеет несколько уровней (табл. 1) и может настраиваться на различные режимы работы: запуск, наладочный, рабочий, плановый останов и т. д.

 

Таблица 1

Уровни управления ГПС

Уровень управления Управляющее оборудование Масштаб управления
Верхний Мини - ЭВМ с расширенной памятью или средняя ЭВМ. Управление системой, оптимизация работы, диспетчирование, хранение массивов данных.
Средний Несколько мини-ЭВМ с меньшей памятью Управление материальными потоками, взаимосвязь работы модулей ГПС.
Нижний Микро-ЭВМ, микропроцессоры, УЧПУ, командоаппараты. Автономное управление модулями ГПС и технологическим оборудованием.
Начальный Датчики, конечные выключатели. Слежение за состоянием работы оборудования, параметрами технологического процесса.

 

Программное обеспечение АСУ ГПС состоит из главной управляющей программы (ГУП) и десяти подпрограмм, каждая из которых выполняет определенные функции (табл. 2). Главная программа осуществляет координацию работы подсистем.

 

Таблица 2

Подсистемы программного обеспечения АСУ ГПС

№ n/n Выполняемые функции
1. Управление запуском оборудования ГПС
2. Корректировка и восстановление информационных массивов
3. Управление технологическим оборудованием
4. Управление системой транспортирования деталей
5. Управление системой транспортирования инструмента
6. Управление наладочными режимами
7. Управление плановым остановом
8. Формирование информационных массивов и их редактирование
9. Подготовка и вывод информации на АЦПУ и дисплей
10. Ввод, хранение и редактирование УП обработки

 

В соответствии с функциональным различием программного обеспечения в АСУ ГПС выделяют две большие подсистемы (рис. 1):

Рис. 1. Подсистемы управления ГПС

 

Техническая подсистема реализует управление геометрической и технологической информацией. Она управляет процессами формообразования и настройки оборудования, осуществляет адаптивное управление обработкой и техническое диагностирование модулей ГПС.

Организационная подсистема реагирует управление ходом всего рабочего процесса ГПС во времени. Основными функциями данной подсистемы являются учет и контроль состояния деталей и заготовок, оптимизация маршрута обработки по сложившейся ситуации, управление материальным потоком заготовок, инструментов и деталей (диспетчирование), накопление и редактирование библиотеки управляющих программ обработки.

СУ ГПС может быть информационно связана с АСТПП и АСУП.

Совокупность ГПС и АСТПП и АСУП образует концепцию интегрированного производства, именуемого за рубежом CAD-CAM.

 


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: