Форма и структура макромолекул полимеров

Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми.

Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации.

Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров может быть вызвано при росте боковых цепей, передачей цепи на макромолекулу, физическими воздействиями (g-облучение) на смесь полимера и мономеров.

Сетчатые полимеры образуются в результате сшивки цепей при вулканизации.

Форма макромолекул влияет на структуру и свойства полимеров.

В линейных и разветвленных макромолекулах, атомы или группы атомов могут вращаться вокруг ординарных связей, постоянно изменяя свою пространственную форму. Это свойство обеспечивает гибкость макромолекул, и они могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластичное состояние, ониобладают термопластическими свойствами: размягчаются при нагревании и затвердевают при охлаждении без химических превращений.

При разветвлении эластические термопластические свойства становятся менее выраженными, а при образовании сетчатой структуры термопластичность теряется. Уменьшение длины цепей ведет к уменьшению эластичности полимеров, например, при переходе от каучука к эбониту.

Линейные полимеры могут иметь регулярную и нерегулярную структуру.

В полимерах регулярной структуры отдельные звенья цепи повторяются в определенной последовательности и располагаются в определенном порядке в пространстве, их называют стереорегулярными. Стереорегулярность изменяет тепловые и механические свойства полимеров.

Полипропилен нерегулярной структуры.

 

Полипропилен регулярной структуры.

                            

                      2.2. Кристаллическое состояние полимеров

Обычно большинство полимеров находится в аморфном состоянии. Но некоторые могут иметь кристаллическую структуру. Кристаллизоваться могут лишь стереорегулярные полимеры.

Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом и между ними возникают водородные связи или межмолекулярное взаимодействие с упорядоченной структурой. Возникают ассоциаты упорядоченно расположенных молекул- пачки (1-стадия). Из пачек образуются фибриллы – агрегаты пачек продолговатой формы и сферолиты – игольчатые образования, радиально расходящиеся из одного центра(2-стадия). Из фибрилл и сферолитов образуются кристаллы (3-стадия).

Большое число кристаллов с аморфными областями между ними представляют кристаллический полимер. Степень кристалличности, например, у полиэтилена может достигать 80%.

Свойства кристаллических и аморфных полимеров различаются. Аморфные полимеры характеризуются областью температур размягчения, т.е. постепенно переходят из твердого состояния вжидкое, а кристаллические полимеры – температурой плавления.

                         2.3. Физические состояния аморфных полимеров

При низкой температуре полимер находится в стеклообразном состоянии и ведет себя как твердое тело.

При повышении температуры полимер переходит в высокоэластичное состояние. В этом состоянии полимер способен к различным обратимым деформациям, что обусловлено подвижностью звеньев и гибкостью молекул. И при дальнейшем повышении температуры вещество переходит в вязкотекучее состояние, Дальнейшее повышение ведет к разрушению(деструкции) полимера. Вязкотекучее состояние характеризуется подвижностью и звеньев и всей макромолекулы. При течении молекулы полимера распрямляются и сближаются, в результате чего усиливается межмолекулярное взаимодействие, и полимер становится жестким. Это явление, характерное только для аморфных полимеров получило название механического стеклования. Его используют при формировании волокон и пленок.

Свойства полимеров

Химические свойства полимеров зависят от их состава, молекулярной массы и структуры, вследствие наличия двойных связей и функциональных групп. Отдельные макромолекулы могут²сшиваться² поперечными связями. Это процесс вулканизации и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры.

При вулканизации происходит взаимодействие каучука с серой (0.5 - 5% серы) с образованием резины или эбонита (20% и более серы), например,

К реакциям взаимодействия функциональных групп с низкомолекулярными веществами относятся галогенирование, гидролиз и д.р.

Полимеры могут подвергаться деструкции, т.е. разрушению под действием кислорода, света, теплоты, радиации. В результате деструкции уменьшается молекулярная масса макромолекул, изменяются физические и химические свойства полимеров и он становится непригодным для дальнейшего применения, Этот процесс называется старением полимеров. Чтобы замедлить этот процесс вводят стабилизаторы, чаще всего антиоксиданты.

Механические свойства полимеров определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул.

С ростом молекулярной массы механическая прочность возрастает, а также при переходе от линейных к разветвленным и далее к сетчатым структурам.

Стереорегулярные структуры имеют большую прочность, чем полимеры с разупорядоченной структурой. Самая высокая прочность у полимеров наблюдается в кристаллическом состоянии. Механическую прочность можно повысить добавлением наполнителей - сажи, мела, армированием стекловолокном.

Электрические свойства полимеров. Вещества делятся на диэлектрики, полупроводники и проводники.

Диэлектрики имеют очень низкую проводимость (< 10ˉ8 Омˉ1×смˉ1), которая увеличивается с повышением температуры.

Внешнее электрическое поле поляризует диэлектрики, т.е. определенно ориентирует молекулы. Внутри возникает собственное электрическое поле, которое ослабляет воздействие внешнего поля. Характеризуется это диэлектрической проницаемостью. При высоком напряжении внешнего электрического поля диэлектрик теряет свои электроизоляционные свойства. Это напряжение называется напряжением пробоя, а отношение напряжение пробоя к толщине диэлектрика - электрической прочностью.

Большинство полимеров относится к диэлектрикам и определяются эти свойства наличием полярных групп в макромолекулах (Clˉ, OHˉ, COOHˉ, и т.п.) - они ухудшают их диэлектрические свойства. Полимеры, не имеющие этих групп: фторопласт, полиэтилен - хорошие диэлектрики. Увеличение молекулярной массы улучшает диэлектрические свойства. При переходе отстеклообразного к высокоэластичному и вязкотекучему состояниям удельная электрическая проводимость возрастает. Для улучшения диэлектрических свойств необходимо удалять из полимеров ионы и примеси. OHˉ обуславливает гидрофильность полимеров. Они поглощают воду. В результате чего увеличивается электропроводность. OHˉ необходимо связывать между собой или с другими группами.

Диэлектрики применяются в электротехнике и радиотехнике как материалы различных электротехнических изделий, защитных покрытий кабелей, проводов, изоляционных эмалей ионы и лаков.

Некоторые полимеры обладают полупроводниковыми свойствами (проводимость 10ˉ10 - 10ˉ4 Ом–1.см–1), это полимеры с сопряженными двойными связями, у них есть делокализованные p - электроны. К ним относят полиацетилен (-CH = CH -)n, поливинилен и др.

                                 4. Применение полимеров

                    4.1. Материалы, получаемые на основе полимеров

1. На основе полимеров получают волокна путем продавливания растворов или расплавов через фильеры с последующим затвердеванием - это полиамиды, полиакрилонитрилы и др.

2. Полимерные пленки получают продавливанием через фильеры с щелевидными отверстиями или нанесением на движущую ленту. Их используют как электроизоляционный и упаковочный материал, основы магнитных лент.

3. Лаки - растворы пленкообразующих веществ в органических растворителях.

4. Клеи, композиции способные соединять различные материалы вследствие образования прочных связей между их поверхностями клеевой прослойкой.

5. Пластмассы

6. Композиты (композиционные материалы) - полимерная основа, армированная наполнителем.

                                    

                          4.2. Области применения полимеров

1. Полиэтилен устойчив к агрессивной среде, влагонепроницаем, является диэлектриком. Из него изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки, оболочки кабелей телефонных и силовых линий.

2. Полипропилен - механически прочен, стоек к изгибам, истиранию, эластичен. Применяют для изготовления труб, пленок, аккумуляторных баков и др.

3. Полистирол - устойчив к действию кислот. Механически прочен, является диэлектриком Используется как электроизоляционный и конструкционный материал в электротехнике, радиотехнике.

4. Поливинилхлорид - трудногорюч, механически прочен, электроизоляционный материал.

5. Политетрафторэтилен (фторопласт) - диэлектрик не растворяется в органических растворителях. Обладает высокими диэлектрическими свойствами в широком диапазоне температур (от -270 до 260ºС). Применяется также как антифрикционный и гидрофобный материал.

6. Полиметилметакрилат (плексиглас) - применяется в электротехнике как конструкционный материал.

7. Полиамид – обладает высокой прочностью, износостойкостью, высокими диэлектрическими свойствами.

8. Синтетические каучуки (эластомеры).

9. Фенолформальдегидные смолы - основа клеев, лаков, пластмасс.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: