Шестиугольник mnhepf — искомое сечение

Задача 4. Построить сечение треугольной призмы ABCA1B1C1 плоскостью, проходящей через точки: M ∈ A1B1; N ∈ BB1 и K ∈ AC.

   

Зaдача 5. Построить сечение треугольной призмы ABCA1B1C1 плоскостью, проходящей через точки: M ∈ AC; N ∈ CC1; K ∈ BB1.

   

Задача 6. Построить сечение тетраэдра SABC плоскостью, проходящей через точки: M ∈ SA; N ∈ SC; K ∈ BC.

   

Задача 7.

 

Задача 8. Дан тетраэдр АВСD. Точка M принадлежит ребру тетраэдра АВ, точка N принадлежит ребру тетраэдра ВD и точка Р принадлежит ребру (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP.

Рис. 2.

Решение:
Рассмотрим грань тетраэдра DВС. В этой грани точки N и P принадлежат грани DВС, а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP – это линия пересечения двух плоскостей: плоскости грани DВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости DВС. Найдем точку пересечения прямых NP и ВС. Обозначим ее Е (Рис. 3.).

Рис. 3. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP, так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP.

Также точка Е лежит в плоскости АВС, потому что она лежит на прямой ВС из плоскости АВС.

Получаем, что ЕМ – линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е, и продолжим прямую ЕМ до пересечения с прямой АС. Точку пересечения прямых ЕМ и АС обозначим Q.

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4.

 

Задача 9. Рассмотрим теперь случай, когда NP параллельна BC. Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС, то прямая NP параллельна всей плоскости АВС.

Искомая плоскость сечения проходит через прямую NP, параллельную плоскости АВС, и пересекает плоскость по прямой МQ. Значит, линия пересечения МQ параллельна прямой NP. Получаем, NPQМ - искомое сечение.

 

Задача 10. Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС.

Рис. 6.

Решение:
Для решения построим вспомогательную плоскость DМN. Пусть прямая пересекает прямую АВ в точке К (Рис. 7.). Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Рис. 7.

 

Задача 11. Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.

Рис. 8.

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС. В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Рис. 9. Нахождение точки К

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.


Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС. Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN (Рис. 10.).

Рис. 10.

Теперь проведем прямую Р1М и получим точку М1.

Р1Р2NМ1 – искомое сечение.






Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: