Красный свет выбивает более медленные электроны, чем голубой

 

Для того чтобы объяснить, почему смещение цвета в красную сторону (к более длинным волнам и меньшей энергии) приводит к уменьшению скорости вылетающих электронов, Эйнштейн использовал формулу, предложенную Планком (Макс Карл Эрнст Людвиг Планк, 1858–1947). Планк первым выдвинул идею о том, что энергия испускается дискретными порциями — квантами, когда объяснял другое связанное со светом явление, называемое излучением чёрного тела. Когда, например, кусок металла нагревается до высокой температуры, он начинает светиться. Так, нагревательный элемент электрокамина или калорифера светится красным. Если температура повышается, свет смещается в голубую сторону. Это относится не только к кускам металла, но также и к звёздам. Красные звёзды — относительно холодные. Жёлтые звёзды, такие как наше Солнце, — горячие. Голубые звёзды — очень горячие. В 1900 году классическая физика не могла объяснить количество света каждого цвета, испускаемого горячим объектом. Планк нашёл объяснение, которое актуально и поныне, введя новое представление о том, что электроны в металле могут «осциллировать»{8} только с определёнными дискретными частотами. Энергетические ступени между этими частотами называются квантами. В 1918 году Планк получил Нобелевскую премию по физике

 

«в знак признания услуг, которые он оказал физике своим открытием квантов энергии».

 

От квантов энергии, открытых Планком, происходит название квантовой механики.

В своей работе Планк ввёл формулу, которая связывает частоту электрона с его энергией: E  = h ∙ ν  . В этой формуле ν   — частота, обсуждавшаяся в главе 3, а h   называется постоянной Планка. Её значение h  =6,6∙10−34 Дж ∙ сек, где Дж — единица энергии джоуль, а сек — секунды. В этой формуле ν   измеряется в герцах (Гц), то есть в обратных секундах (1/ сек); поэтому результат умножения h   на ν   измеряется в единицах энергии — джоулях. В своём описании излучения чёрного тела Планк постулировал, что энергия может изменяться только дискретными шагами. Она может быть равна h  ∙ ν  , 2 h  ∙ ν  , 3 h  ∙ ν   и т. д., но не может принимать промежуточные значения между этими ступенями. Понимание того, что на атомном уровне энергия меняется дискретными квантами, положило начало квантовой механике.

Эйнштейн предположил, что формула Планка также применима и к фотонам, так что энергия фотона зависит от его частоты ν  : E  = h ∙ ν  . С помощью этой формулы Эйнштейн объяснил, почему красный свет порождает более медленные электроны, чем голубой. Частота красного света ниже, чем голубого. Поэтому красный фотон менее энергичен, чем голубой. Продолжая аналогию с пулом, мы понимаем, что голубой фотон сильнее толкает электрон, чем красный, и поэтому электрон приобретает более высокую скорость. При таком объяснении становится понятно, почему по мере покраснения света выбиваемые им из металла электроны становятся всё медленнее.

 

Очень красный свет не выбивает электронов

 

Остаётся объяснить ещё одно наблюдение: почему электроны перестают вылетать из металла, когда свет становится слишком красным? Эйнштейн ответил и на этот вопрос. Когда электрон выбивается из металла фотоном, у него имеется определённая кинетическая энергия. Кинетическая энергия связана с его движением. Чем выше эта энергия, тем быстрее движется электрон. Она обозначается E  k, где индекс k   означает «кинетическая». Кинетическая энергия вычисляется по формуле

E  k=½ m  ∙ V  2,

где m   — масса, а V   — скорость. В таком случае скорость электрона, вылетевшего из металла, связана с его энергией, которая в свою очередь связана с энергией выбившего его фотона. Более энергичный фотон передаст электрону больше кинетической энергии, и электрон будет двигаться быстрее (с большей скоростью V  ).

Как уже говорилось, электроны удерживаются в металле энергией связи, обозначаемой E  b, где индекс b   означает «связывание» (binding). В связи с этим часть энергии, принесённой фотоном, уходит на преодоление энергии связи. Кинетическая энергия, с которой электрон выходит из металла, равна разности энергии фотона E  = h  ∙ ν   и энергии связи E  b. Таким образом, кинетическая энергия электрона составляет E  k= h  ∙ ν  − E  b. Чтобы электрон вылетел из металла, энергия фотона h  ∙ ν   должна быть больше энергии связи E  b. По мере того как свет краснеет (длина волны λ   увеличивается), частота ν   уменьшается, поскольку ν  = с  / λ  , где c   — скорость света. При некотором достаточно красном цвете h  ∙ ν   становится меньше E  b, и электроны больше не могут вылетать из металла. Повышение интенсивности света увеличивает число фотонов, падающих на металл, но ни один из них не имеет достаточной энергии, чтобы выбить электрон.

Тот факт, что электроны перестают вылетать из металла, когда фотоны уходят достаточно далеко в красную область (имеют достаточно низкую энергию), можно понять на примере детской уличной игры Red Rover{9}. В этой игре группа детей из одной команды растягивается в шеренгу, держась за руки. Игрок из другой команды с разбегу бросается на эту шеренгу и, если бежит достаточно быстро (имеет высокую энергию), разрывает её и продолжает двигаться, хотя и медленнее. При несколько меньшей скорости он всё ещё сможет прорвать шеренгу. Однако если он будет бежать достаточно медленно, то не сможет пробиться сквозь неё, поскольку энергии не хватит, чтобы преодолеть энергию связи рук в шеренге.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: