Собственные состояния

 

При обсуждении рис. 6.1 говорилось, что свободная частица с чётко определённым импульсом p   представляет собой делокализованную волну амплитуды вероятности, распределённую по всему пространству. Про такую частицу говорят, что она находится в собственном состоянии по импульсу. При обсуждении задачи об интерференции мы называли T  1 и T  2 чистыми состояниями, однако их корректное название — собственные состояния. Собственное состояние для конкретной наблюдаемой физической величины, такой как импульс, — это состояние с чётко определённым значением данной величины.

Свободная частица, находящаяся в собственном состоянии по импульсу, полностью делокализована в пространстве. Для каждого из бесконечного числа возможных значений импульса существует по одному такому собственному состоянию. Положение частицы однородно размазано по всему пространству, поскольку волновая функция, связанная с этим собственным состоянием, распределена по всему пространству. Однако, согласно принципу суперпозиции, новое состояние может быть образовано из любого числа собственных состояний по импульсу.

 

Суперпозиция волн амплитуды вероятности импульсных собственных состояний

 

Для понимания природы реальных частиц — фотонов, электронов и т. п. — мы будем строить суперпозиции волн амплитуды вероятности для целых диапазонов импульсных собственных значений, подобно тому как это было показано на рис. 6.1. Для каждого импульса p   волна имеет свою длину: — λ  = h  / p  . Из рис. 6.3 и 6.4 видно, что сложение волн с различными длинами приводит к концентрации амплитуды волны в определённой области пространства. Как отмечалось в обоих рассмотренных выше примерах, амплитуда всех волн в этих суперпозициях была одинаковой.

Теперь мы будем складывать импульсные волны амплитуды вероятности с различными амплитудами. Есть одна волна (определённое значение p  ) с наибольшей амплитудой. И чем больше другие волны отличаются от неё по длине, тем меньше их амплитуда. Длина волны с максимальной амплитудой находится в центре распределения. Под распределением имеется в виду просто диапазон длин волн. Представьте себе такую аналогию: комната, полная людей, которые распределены по возрасту. Некоторые люди будут иметь средний возраст, соответствующий центру распределения, другие будут старше или моложе среднего. В нашем случае имеется волна в центре распределения и другие волны — более короткие и более длинные.

 

 

Рис. 6.5. График вероятности обнаружить частицу в конкретном импульсном собственном состоянии, соответствующем импульсу p, задаётся как суперпозиция импульсных волн амплитуды вероятности. Значение p  0 — это средняя волна с наибольшей амплитудой в данном распределении. Величина ∆ p служит мерой ширины распределения собственных значений

 

На рис. 6.5 показано распределение волн амплитуды вероятности для импульсных состояний. Значение p  0 — это импульс волны в центре распределения. Она имеет длину λ = h  / p  0. Это волна с наибольшей амплитудой, с наибольшей вероятностью обнаружения в данном распределении. При увеличении или уменьшении импульса относительно p  0 (λ   соответственно будет меньше или больше) величина отдельной волны в суперпозиции (её вероятность) убывает. Величина ∆ p   служит мерой ширины распределения. Если значение ∆ p   велико, имеется большой разброс по p  , а значит, и большая ширина распределения длин волн. Если значение ∆ p   мало́, то мала и ширина распределения длин волн.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: