Плоские и планарные графы. Плоские карты. Теорема Эйлера

Плоский граф – это граф, который нарисован на плоскости так, что никакие два его ребра не пересекаются.

Планарный граф – это граф, изоморфный плоскому графу.

На рисунке а) – планарный, но не плоский, граф, б) плоский граф.

Каждый плоский граф разбивает плоскость на грани: внутренние - ограниченные и внешнюю – неограниченную.

Изучение планарных графов было начато Эйлером в его исследованиях полиэдров. Следующая формула Эйлера – это классический результат в математике: , где – число вершин, – число ребер, – число граней полиэдра. Формула Эйлера справедлива и в более общем случае для плоской карты – связного плоского графа, рассматриваемого вместе со всеми его гранями.

Теорема. Пусть плоская карта имеет вершин, ребер и граней. Тогда имеет место следующее равенство:

. (1)

Доказательство. Применим индукцию по числу ребер .

Если , то формула (1) примет следующий вид: .

Допустим, что для всех плоских карт с числом ребер не больше формула (1) верна. Плоская карта с числом ребер получается из плоской карты с числом ребер двумя способами:

1) прибавлением новой вершины , которая соединяется ребром с одной из старых вершин;

2) соединением ребром двух не смежных вершин.

В первом случае формула (1) проверяется следующим образом:

.

Во втором случае появляется новая грань и формула (1) проверяется следующим образом:

.

Следствие 1. Если в -карте каждая грань образована циклом из вершин, то

. (2)

Доказательство. Число ребер, принадлежащих каждой грани равно . Значит, число вершин, подсчитываемых при каждой грани, равно . При этом каждое ребро подсчитывается дважды, поэтому число пересчитываемых вершин равно . Получим равенство . Подставим в (1) и найдем (2).

Теорема Куратовского. Граф планарен тогда и только тогда, когда не содержит подграфа, гомеоморфного или .

35. Полные графы. Граф K4 планарный и граф K5 не планарный.

Максимальным планарным графом называется планарный граф, который при добавлении любого ребра перестает быть планарным.

Из определения следует, что в максимально планарном графе все грани являются треугольниками (гранями с тремя вершинами):

если грань содержит четырехугольник (или многоугольник с большим числом сторон), то можно добавить ребро , не меняющее планарность графа, но лишающее свойства графа быть максимально планарным графом.

Пример. В следующий граф можно добавить только одно ребро, после которого этот граф обращается в граф .

Лемма. Если – планарный -граф и , то

.

Доказательство. Наибольшим числом ребер в плоском графе обладает граф, у которого все грани – треугольники. В максимальном планарном графе все грани – треугольники. Подставим в (2) . Получим .

Теорема. Графы не планарный.

Доказательство. Если (5,10)-граф планарный, то не выполняется лемма: .

36. Двудольные графы. Граф K2,3 планарный и граф K3,3 не планарный.

Граф называется двудольным - графом, если множество вершин состоит из двух непустых частей , (, ), внутри которых нет ребер.

Если при этом все вершин из соединены со всеми вершинами из , то граф называется полным двудольным - графом и обозначается через .

Приведем полные двудольные графы с числом вершин не больше 4:

Максимальным планарным двудольным графом называется планарный двудольный граф, который при добавлении любого ребра перестает быть планарнымдвудольным графом.

Если – максимальный планарный двудольный граф, то каждая ее грань является четырехугольником:

Пример. В следующий граф можно добавить только одно ребро, после которого этот граф обращается в граф :

Лемма. Если – планарный двудольный граф, то -граф, то

.

Доказательство. Наибольшим числом ребер в плоском двудольном графе обладает граф, у которого все грани – четырехугольники. В максимальном планарном графе все грани – четырехугольники. Подставим в (2) . Получим .

Теорема. Графы и не планарные.

Доказательство. Если (6,9)-граф планарный, то не выполняется лемма: .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: