Диаграммы декомпозиции

Каждая активность может быть подвергнута декомпозиции на другой – " дочерней " диаграмме (Child Diagram). Каждая диаграмма нижнего уровня показывает "внутреннее" строение активности на родительской диаграмме (Parent Diagram). Каждая из активностей дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0‑модели.

Чтобы сделать диаграммы удобочитаемыми, в стандарте IDEF0 приняты ограничения сложности: на диаграмме может быть от трех до шести активностей (в BPwin – от 2 до 8), при этом количество подходящих к одной активности и выходящих из одной активности дуг предполагается не более четырех.

Работы на диаграммах декомпозиции обычно располагаются в так называемом порядке доминирования – по диагонали от левого верхнего угла к правому нижнему. Согласно этому принципу расположения в левом верхнем углу располагается самая важная работа или работа, выполняемая по времени первой. Далее вправо вниз располагаются менее важные или выполняемые позже работы. Такое расположение облегчает чтение диаграмм, кроме того, на нем основывается понятие взаимосвязей работ.

Все активности модели нумеруются. Номер состоит из префикса и числа. Может быть использован префикс любой длины, но обычно используют префикс А. Контекстная активность имеет номер А0. Активности, полученные в результате декомпозиции контекстной активности номера А1, А2, A3 и т. д. Работы декомпозиции нижнего уровня имеют номер родительской активности и очередной порядковый номер, например активности декомпозиции A3 будут иметь номера А31, А32, АЗЗ, А34 и т. д. Активности образуют иерархию, где каждая активность может иметь одну родительскую и несколько дочерних работ, образуя дерево. Такое дерево называют деревом узлов, а вышеописанную нумерацию – нумерацией по узлам.

Диаграммы IDEF0 имеют двойную нумерацию. Во-первых, диаграммы имеют номера по узлу. Контекстная диаграмма всегда имеет номер А‑0, декомпозиция контекстной диаграммы – номер А0, остальные диаграммы декомпозиции – номера по соответствующему узлу (например, Al, A2, А21, А213 и т. д.). BPwin автоматически поддерживает нумерацию по узлам, т. е. при проведении декомпозиции создается новая диаграмма и ей автоматически присваивается соответствующий номер.

Чтобы отличать различные версии одной и той же диаграммы используется специальный номер – C-number, который должен присваиваться автором модели вручную. C-number – это произвольная строка, но рекомендуется придерживаться стандарта, когда номер состоит из буквенного префикса и порядкового номера, причем в качестве префикса используются инициалы автора диаграммы, а порядковый номер отслеживается автором вручную, например GVI021.

Если активность не повергалась декомпозиции, то левый верхний прямоугольника активности автоматически перечеркивается.

Стрелки на контекстной диаграмме служат для описания взаимодействия системы с окружающим миром. Они могут начинаться у границы диаграммы и заканчиваться у работы, или наоборот. Такие стрелки называются граничными. Граничные стрелки мигрируют (переносятся) из родительской диаграммы в дочернюю диаграмму. Границы дочерней диаграммы соответствуют границам декомпозируемой активности. Поэтому входные стрелки располагаются на левой границе диаграммы декомпозиции и т. п. Для большего удобства граничные стрелки могут снабжаться так называемыми ICOM ‑кодами. ICOM (аббревиатура от Input, Control, Output и Mechanism) – коды, предназначенные для идентификации граничных стрелок. Код ICOM содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер. Граничные стрелки необходимо соединить с соответствующими входами, выходами и т. п. активностей диаграммы декомпозиции.

Стрелки, соединяющие активности на диаграмме, называются внутренними. В IDEF0 различают пять типов связей работ.

Связь по входу (output-input), когда стрелка выхода вышестоящей работы (далее – просто выход) направляется на вход нижестоящей работы (рис. 3.3). На рис. 3.6 – 3.7 в основном показаны только рассматриваемые связи.

Рис. 3.3. Связь по входу

Связь по управлению (output-control), когда выход вышестоящей работы направляется на управление нижестоящей (рис. 3.4). Связь по управлению показывает доминирование вышестоящей работы.

Рис. 3.4. Связь по управлению

Обратная связь по входу (output-input feedback), когда выход нижестоящей работы направляется на вход вышестоящей (рис. 3.5). Такая связь, как правило, используется для описания циклов.

Рис. 3.5. Обратная связь по входу

Обратная связь по управлению (output-control feedback), когда выход нижестоящей работы направляется на управление вышестоящей (рис. 3.6). Обратная связь по управлению часто свидетельствует об эффективном управлении бизнес-процессами.

Рис. 3.6. Обратная связь по управлению

Связь выход-механизм (output-mechanism), когда выход одной работы направляется на механизм другой. Эта взаимосвязь используется реже остальных и показывает, что одна работа подготавливает ресурсы, необходимые для проведения другой работы (рис. 3.7).

Рис. 3.7. Связь выход-механизм

Простейшим и наиболее распространенным видом стрелок является явная стрелка, которая имеет источником одну-единственную активность и назначением тоже одну-единственную активность. Одни и те же данные или объекты, порожденные одной активностью, могут использоваться сразу в нескольких других активностях. С другой стороны, стрелки, порожденные в разных активностях, могут представлять собой одинаковые или однородные данные или объекты, которые в дальнейшем используются или перерабатываются в одном месте. Для моделирования таких ситуаций в IDEF0 используются разветвляющиеся и сливающиеся стрелки. Смысл разветвляющихся и сливающихся стрелок передается именованием каждой ветви стрелок. Существуют определенные правила именования таких стрелок. Рассмотрим их на примере разветвляющихся стрелок. Если стрелка именована до разветвления, а после разветвления ни одна из ветвей не именована, то подразумевается, что каждая ветвь моделирует те же данные или объекты, что и ветвь до разветвления. Если стрелка именована до разветвления, а после разветвления какая-либо из ветвей тоже именована, то подразумевается, что эти ветви соответствуют именованию. Если при этом какая-либо ветвь после разветвления осталась неименованной, то подразумевается, что она моделирует те же данные или объекты, что и ветвь до разветвления. Недопустима ситуация, когда стрелка до разветвления не именована, а после разветвления не именована какая-либо из ветвей. Правила именования сливающихся стрелок полностью аналогичны – ошибкой будет считаться стрелка, которая после слияния не именована, а до слияния не именована какая-либо из ее ветвей. Для именования отдельной ветви разветвляющихся и сливающихся стрелок следует выделить на диаграмме только одну ветвь, после чего вызвать редактор имени и присвоить имя стрелке. Это имя будет соответствовать только выделенной ветви.

Иногда отдельные интерфейсные дуги высшего уровня не имеет смысла продолжать рассматривать на диаграммах нижнего уровня, или наоборот – отдельные дуги нижнего уровня отражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования.

Вновь созданные на диаграмме декомпозиции граничные стрелки изображаются в квадратных скобках и автоматически не появляются на диаграмме верхнего уровня (рис. 3.8).

Рис. 3.8. Неразрешенная (unresolved) стрелка

Можно разрешить миграцию новой стрелки на диаграмму верхнего уровня или не разрешить такую миграцию. В последнем случае говорят, что стрелка будет туннелирована В BPwin для этого нужно щелкнуть правой кнопкой мыши по квадратным скобкам граничной стрелки и в контекстном меню выбрать команду Arrow Tunnel. Появляется диалог Border Arrow Editor. Если щелкнуть по кнопке Resolve Border Arrow, стрелка мигрирует на диаграмму верхнего уровня, если по кнопке Change To Tunnel – стрелка будет туннелирована и не попадет на другую диаграмму. Туннельная стрелка изображается с круглыми скобками на конце.

Туннелирование может быть применено для изображения малозначимых стрелок. Если на какой-либо диаграмме нижнего уровня необходимо изобразить малозначимые данные или объекты, которые нецелесообразно отображать на диаграммах вышестоящего уровня, то следует туннелировать стрелки на самом нижнем уровне. Такое туннелирование называется туннель "не-в-родительской-диаграмме". Другим примером туннелирования может быть ситуация, когда стрелка механизма мигрирует с верхнего уровня на нижний, причем на нижнем уровне этот механизм используется одинаково во всех работах без исключения. В этом случае стрелка механизма на нижнем уровне может быть удалена, после чего на родительской диаграмме она может быть туннелирована, острие стрелки на родительской диаграмме будет изображено в круглых скобках. В комментарии к стрелке или в словаре можно указать, что механизм будет использоваться во всех работах дочерней диаграммы декомпозиции. Такое туннелирование называется туннель "не-в-дочерней-работе".

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моделируемой системы. Обычно процесс разработки является итеративным и состоит из следующих условных этапов:

1. Создание модели группой специалистов, относящихся к различным сферам деятельности предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов, создавая модели деятельности подразделений. При этом их интересуют ответы на следующие вопросы:

– Что поступает в подразделение "на входе"?

– Какие функции и в какой последовательности выполняются в рамках подразделения?

– Кто является ответственным за выполнение каждой из функций?

– Чем руководствуется исполнитель при выполнении каждой из функций?

–Что является результатом работы подразделения (на выходе)?

2. На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

3. Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким кругом компетентных лиц (в терминах IDEF0 – читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем передается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ее с изложением логики принятия решения и вновь возвращает откорректированный черновик для дальнейшего рассмотрения. Этот цикл продолжается до тех пор, пока авторы и читатели не придут к единому мнению.

4. Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель представляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, которые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем на базе построенной модели могут быть организованы новые проекты, нацеленные на производство изменений в модели.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: