Эндосимбиотическая теория

Еще в 1921 г. русский ботаник Б.М. Козо-Полянский высказал мнение, что клетка — это симбиотрофная система, в которой сожительствует несколько организмов. В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии — это в прошлом самостоятельные организмы. По мнению Л. Маргелис (1983), это могли быть эубактерии, содержащие ряд дыхательных ферментов. На определенном этапе эволюции они внедрились в примитивную, содержащую ядро, клетку. Оказалось, что ДНК митохондрий и хлоропластов по своей структуре резко отличается от ядерной ДНК высших растений и сходна с бактериальной ДНК (кольцевое строение, нуклеотидная последовательность). Сходство обнаруживается и по величине рибосом. Они мельче цитоплазматических рибосом. Синтез белка в митохондриях, подобно бактериальному, подавляется антибиотиком хлорамфениколом, который не влияет на синтез белка на рибосомах эукариот. Кроме того, система переноса электронов у бактерий расположена в плазматической мембране, что напоминает организацию электронтранспортной цепи во внутренней митохондриальной мембране.

Свойства митохондрий (белки, структура) закодированы частично в ДНК митохондрий, а частично в ядре. Так, митохондриальный геном кодирует белки рибосом и частично систему переносчиков электронотранспортной цепи, а в геноме ядра кодирована информация о белках-ферментах цикла Кребса. Сопоставление размеров митохондриальной ДНК с числом и размером митохондриальных белков показывает, что в ней заложено информации почти для половины белков. Это и позволяет считать митохондрии, как и хлоропласты, полуавтономными, т.е. не полностью зависящими от ядра. Они имеют собственную ДНК и собственную белоксинтезирующую систему, и именно с ними и с пластидами связана так называемая цитоплазматическая наследственность. В большинстве случаев это наследование по материнской линии, так как инициальные частицы митохондрий локализованы в яйцеклетке. Таким образом, митохондрии всегда образуются от митохондрий. Широко обсуждается вопрос, как рассматривать митохондрии и хлоропласты с эволюционной точки зрения.

21.

Организм человека состоит из клеток и межклеточного вещества, которые образуют ткани, органы и системы органов. Эти компоненты совмещены в единственный организм, который функционирует под воздействием нервной и эндокринной систем. Организм – это биологическая система, которая имеет свойства: самообновление, самовоспроизведение, саморегуляция.

Орган – часть тела, которая имеет определенную форму, строение, расположение и выполняет одну или несколько специальных функций. Каждый орган образован несколькими тканями, но одна из них всегда преобладает и определяет его главную функцию. В каждом органе обязательно есть кровеносные сосуды и нервы. Часть органов расположена в полостях тела, потому их называют внутренними.

Анатомическое или функциональное объединение органов, которые выполняют в организме общую функцию, составляет физиологичную систему органов. Различают такие физиологичные системы: опорно-двигательная, кровеносная, дыхательная, пищеварительная, нервная, эндокринная, мочеполовая, система органов чувств (сенсорные).

Системы органов работают не изолировано, а объединяются для достижения полезного для организма результата. Такое временное объединение органов и систем органов называют функциональной системой. Например, бег может быть обеспечен функциональной системой, которая включает: нервную систему, органы движения, дыхания, кровообращения, потовыделения.

22

Гомеостаз – это постоянство внутренней среды организма. Регуляция гомеостаза включает поддержание на необходимом для организма уровня биохимических, физико-химических, ферментативных и других констант, нарушение которых проявляется не только вегетативными, но и соматическими дисфункциями.

Гомеокинез – это приспособление к условиям изменяющейся внешней среды. Регуляция гомеокинеза включает обеспечение различных форм деятельности (умственной, эмоциональной, физической и реализации биологических мотиваций) целостного организма. Нарушение адекватных гомеокинетических реакций (их недостаточность или чрезмерность) изменяет поведение человека, способствует дезадаптации и наконец, возникновению заболевания и гибели организма. На основании анатомо-функционального анализа вегетативную нервную систему делят на сегментарную и надсегментарную.

23

ДНК состоит из двух полинуклеотидных цепей, которые соединяются при водородных связей между азотистыми основаниями по принципу комплементарности – это принцип строгова соответствия. Цепи соединены антипаралельно,. Цепи ДНК в силу своей неравномерности распределения водородных связей, цепи закручиваются в спираль. Один виток содержит около 10 нуклеотидов. ДНК главным образом содержится в ядре клетки, но она так же входит в состав пластид и митохондрий. В ее структуре содержится вся генетическая информация. ДНК участвует в ее хранении и реализации. Колличкство ДНК в самотических клетках постоянна в пределах одного вида. ДНК обладает важным свойством репликацией. Репликация ДНК происходит в S период клеточного цикла в интерфазе, при подготовке клетки к делению. Под действием фермента ДНК-полимиразы, молекула ДНК раскручивается и водородные связи разрывыаются. Затем цпи расходятся и служат матрицами для синтеза длчерних цепей. При этом направление синтеза определяется С3 положением. Поэтому на одной зи цепей синтез происходит непрерывно – лидирующая цепь, а на другой цепи синтез происходит в виде фрагментов, которые потом сшиваются – отстающая цепь. Полинуклеотидная цепь ДНК состоит из нуклеотидов. А что является структурными компонентами нуклеотидов?

В состав любого нуклеотида ДНК входит одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц), а также сахар дезоксирибоза (C3H10O4) и остаток фосфорной кислоты.

Различаются ли нуклеотиды между собой?
Они отличаются только азотистыми основаниями, которые попарно имеют близкое химическое строение: Ц подобен Т (они относятся к пиримидиновым основаниям), А подобен Г (они относятся к пуриновым основаниям). А и Г по размерам несколько больше, чем Т и Ц. В ДНК входят нуклеотиды только четырех видов.
Как объединяются две полинуклеотидные цепи в единую молекулу ДНК?
Между азотистыми основаниями нуклеотидов разных цепей образуются водородные связи (между А и Т – две, а между Г и Ц – три). При этом А соединяется водородными связями только с Т, а Г – с Ц. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых – числу цитидиловых. Эта закономерность получила название правила Чаргаффа. Благодаря этому свойству последовательность нуклеотидов в одной цепочке определяет их последовательность в другой, т.е. цепи ДНК являются как бы зеркальными отражениями друг друга. Такое избирательное соединение нуклеотидов называется комплементарностью, и это свойство лежит в основе самосборки новой полинуклеотидной цепи ДНК на базе исходной. Помимо водородных связей в стабилизации структуры двойной спирали участвуют и гидрофобные взаимодействия.

Задание (Слайд): постройте молекулу и-РНК, если участок молекулы ДНК имеет следующее строение:

А – А – Ц – Г – Г – Ц – Г – Т – А – Ц – Г – Т

У – У – Г – Ц – Ц – Г – Ц – А – У – Г – Ц – А – решение.

Необходимо напомнить, что вместо тимина в РНК содержится урацил (мнемоника: вместо Тигра-Альбиноса в РНК строится Утка-Альбинос)
Дополнительный вопрос: сколько аминокислотных звеньев в молекуле белка кодирует данный участок? Решение: Так как данный участок и-РНК состоит из 12 нуклеотидов, а одну аминокислоту кодирует триплет, т. е. тройка нуклеотидов, то число аминокислотных звеньев равно 12: 3 = 4

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ:

1) азотистого основания,
2) пятиуглеродного моносахарида (пентозы) и
3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК:

1) информационная (матричная) РНК — иРНК (мРНК),
2) транспортная РНК — тРНК,
3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синт

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.

Функции тРНК:

1) транспорт аминокислот к месту синтеза белка, к рибосомам,
2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3'-концу акцепторного стебля.

Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках.

Функции рРНК:

1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом;
2) обеспечение взаимодействия рибосомы и тРНК;
3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания,
4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Функции иРНК:

1) перенос генетической информации от ДНК к рибосомам,
2) матрица для синтеза молекулы белка,
3) определение аминокислотной последовательности первичной структуры белковой молекулы


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: