Косвенные однократные измерения

2.1 Основные понятия и определения [1]

Измерением называют совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.

Измерения являются основным источником информации о соответствии продукции требованиям нормативной документации. Только достоверность и точность измерительной информации обеспечивают правильность принятия решений о качестве продукции, на всех уровнях производства, при испытаниях изделий, в научных экспериментах и т.д.

Измерения классифицируются:

а) по числу наблюдений:

- однократное измерение – измерение, выполняемое один раз. Недостатком этих измерений является возможность грубой ошибки – промаха;

- многократное измерение измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящее из ряда однократных измерений.

Обычно их число n ³ 3. Многократные измерения проводят с целью уменьшения влияния случайных факторов на результат измерений;

б ) по характеру точности (по условиям измерения):

- ра вноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности СИ в одних и тех же условиях с одинаковой тщательностью;

- неравноточные измерения – ряд измерений какой-либо величины, выполненных несколькими различающимися по точности СИ и (или) в разных условиях;

в) по выражению результата измерения:

- абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант (например измерение силы основано на измерении основной величины – массы и использовании физической постоянной – ускорения свободного падения (в точке измерения массы);

- относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную;

г) по способу получения результата измерения:

- п рямое измерение – это измерение, при котором искомое значение физической величины получают непосредственно (например, измерение массы на весах, измерение длины детали микрометром);

- косвенное измерение – это определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной;

- совокупные измерения – это проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях (например, значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь);

- совместные измерения – это проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними;

д) по характеру изменения измеряемой физической величины:

- статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Они проводятся при практическом постоянстве измеряемой величины;

- динамическое измерение – измерение изменяющейся по размеру физической величины;

е) по метрологическому назначению используемых средств измерений:

- технические измерения – измерения с помощью рабочих средств измерений;

- метрологические измерения – измерения при помощи эталонных средств измерений с целью воспроизведения единиц физических величин для передачи их размера рабочим средствам измерений.

Результаты измерений представляют собой приближенные оценки значений величин, найденные путем измерений, так как даже самые точные приборы не могут показать действительного значения измеряемой величины. Обязательно существует погрешность измерений, причинами которой могут быть различные факторы.Они зависят от метода измерения, от технических средств, с помощью которых проводятся измерения, и от восприятия наблюдателя, осуществляющего измерения.

Точность результата измерений – это одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Чем меньше погрешность измерения, тем больше его точность.

Погрешность измерения – отклонение результата измерения от истинного или действительного значения ( или ) измеряемой величины:

(2.1)

Истинное значение физической величины – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину.

Оно не зависит от средств нашего познания и является абсолютной истиной. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.

Действительное значение физической величины значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Погрешности измерения так же могут быть классифицированы по ряду признаков, в частности:

а) по способу числового выражения;

б) по характеру проявления;

в) по виду источника возникновения (причин возникновения).

По способу числового выражения погрешность измерения может быть:

Абсолютная погрешность измерения () представляет собой разность между измеренной величиной и действительным значением этой величины, т.е.

(2.2)

Относительная погрешность измерения () представляет собой отношение абсолютной погрешности измерения к действительному значению измеряемой величины. Относительная погрешность может выражаться в относительных единицах (в долях) или в процентах:

или % (2.3)

В зависимости от характера проявления различают систематическую () и случайную () составляющие погрешности измерений, а также грубые погрешности (промахи).

Систематическая погрешность измерения ( ) – это составляющая погрешности результата измерений, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

Случайная погрешность измерения () - составляющая погрешности результата измерений, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.

Грубые погрешности (промахи) возникают из-за ошибочных действий оператора, неисправности СИ или резких изменений условий измерений (например, внезапное падение напряжения в сети электропитания).

В зависимости от вида источника возникновения погрешности рассматриваются следующие составляющие общей погрешности измерений:

Погрешности метода – это погрешности, обусловленные несовершенством метода измерений, приемами использования средств измерения, некорректностью расчетных формул и округления результатов, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Инструментальные составляющие погрешности – это погрешности, зависящие от погрешностей применяемых средств измерений.

Исследование инструментальных погрешностей является предметом специальной дисциплины – теории точности измерительных устройств.

Субъективные составляющие погрешности – это погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: