Основные модели представления знаний в экспертной системе

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие).

Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы).

При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения — к данным). Данные — это исходные факты, на основании которых запускается машина вывода — программа, перебирающая правила из базы.

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Семантические сети. Термин семантическая означает смысловая, а сама семантика — это наука, устанавливающая отношения между символами и объектами, которые они обозначают, т.е. наука, определяющая смысл знаков.

Семантическая сеть — это ориентированный граф, вершины которого — понятия, а дуги — отношения между ними.

Понятиями обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа: "это" ("is"), "имеет частью" ("has part"), "принадлежит", "любит". Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

· класс — элемент класса;

· свойство — значение;

· пример элемента класса.

Можно ввести несколько классификаций семантических сетей. Например, по количеству типов отношений:

· однородные (с единственным типом отношений);

· неоднородные (с различными типами отношений). По типам отношений:

· бинарные (в которых отношения связывают два объекта);

· парные (в которых есть специальные отношения, связывающие более двух понятий). Наиболее часто в семантических сетях используются следующие отношения:

· связи типа «часть-целое» («класс-подкласс», «элемент-множество» и т.п.);

· функциональные связи (определяемые обычно глаголами «производит», «влияет»...);

· количественные (больше, меньше, равно...);

· пространственные (далеко от, близко от, за, под, над...);

· временные (раньше, позже, в течение...);

· атрибутивные связи (иметь свойство, иметь значение...);

· логические связи (и, или, не) и др.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, соответствующей поставленному вопросу.

Основное преимущество этой модели — в соответствии современным представлениям об организации долговременной памяти человека. Недостаток модели — сложность поиска вывода на семантической сети.

Фреймы. Фрейм (англ. frame — каркас или рамка) предложен М. Минским в 70-е гг. как структура знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование.

Под фреймом понимается абстрактный образ или ситуация. В психологии и философии известно понятие абстрактного образа. Например, слово "комната" вызывает у слушающих образ комнаты: "жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2». В теории фреймов такой образ называется фреймом. Фреймом называется также и формализованная модель для отображения образа.

Структуру фрейма можно представить так:

ИМЯ ФРЕЙМА:

(имя 1-го слота: значение 1-го слота), (имя 2-го слота: значение 2-го слота),

(имя N-ro слота: значение N-го слота). Ту же запись представим в виде таблицы, дополнив двумя столбцами.

Имя фрейма  
имя слота тип слота значение слота присоединенная процедура
       
         
           

В таблице дополнительные столбцы предназначены для описания типа слота и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов. В качестве значения слота может выступать имя другого фрейма; так образуют сети фреймов.

Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреимы-экземпляры, которые создаются для отображения реальных ситуаций на основе поступающих данных.

Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

· фреймы-структуры, для обозначения объектов и понятий (заем, залог, вексель);

· фреймы-роли (менеджер, кассир, клиент);

· фреимы-сценарии (банкротство, собрание акционеров, празднование именин);

· фреймы-ситуации (тревога, авария, рабочий режим устройства) и др.

Важнейшим свойством теории фреймов является заимствованное из теории семантических сетей наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of = это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, т.е. переносятся, значения аналогичных слотов.

Основным преимуществом фреймов как модели представления знаний является способность отражать концептуальную основу организации памяти человека, а также ее гибкость и наглядность.

Логическая модель – модель представления знаний, в основе которой лежит формальная система (например, исчисление предикатов). Логика имеет дело с выявлением обоснованности утверждения, т.е. с методами, позволяющими документировать, можно ли данное заключение вывести исходя из известных факторов.

Логический вывод – последовательность рассуждений, приводящая к следствию с использованием аксиом и правил вывода.

Логика бывает монотонная (логика замкнутого мира, некоторая формальная система, т.е. если на каком-либо шаге вывода получено утверждение, то оно действует на последних шагах) и немонотонная (логика открытого мира: утверждение при поступлении в систему новой информации может измениться. Эта логика характерна для интеллектуальных систем, имеющих дело со сложными предметными областями).

Если экспертная система реализует монотонную логику, ее называют статической, а если немонотонную – динамической экспертной системой.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: