Универсальное множество

Роль нуля в алгебре множеств играет пустое множество. А нет ли такого множества, которое играет роль «1», т.е. удовлетворяет условию: X∪I = X, что означает, что пересечение или «общая часть» множества I и множества X для любого множества X совпадает с самим этим множеством. Это возможно лишь в том случае, если множество I содержит все элементы, из которых может состоять множество X, так что любое множество X полностью содержится в множестве I.

Множество I, удовлетворяющее этому условию, называется полным, или универсальным, или единичным.

Если при некотором рассмотрении участвуют только подмножества некоторого фиксированного множества, то это самое большое множество будем считать универсальным и обозначать I.

Пример 12 (Пример 1). I — множество целых чисел

Пример 13 (Пример 2). I — множество студ. гр.

Пример 14 (Пример 3). I — лист бумаги, доска

Универсальное множество обычно обозначают графически в виде множества точек прямоугольника, а отдельные множества в виде отдельных областей внутри этого прямоугольника. Изображение множеств в виде областей в прямоугольнике, представляющем универсальное множество, называется диаграммой Эйлера-Венна.

Универсальное множество обладает интересным свойством, которое не имеет аналогии в обычной алгебре, а именно, для любого множества X справедливо соотношение X∪I = I.

Дополнение множества

Множество, определяемое из соотношения X¯ = I\X, называется дополнением множества X (до универсального множества I).

На диаграмме множество X¯ представляет собой незаштрихованную область.

Формально: X = {x: x∈I и x∉X}.

Из определения следует, что X и X¯ не имеют общих элементов. Х∩X¯=∅.

Кроме того, не имеется элементов I, которые не принадлежали бы ни X, ни X¯ (его дополнению), так как те элементы, которые не принадлежат X, принадлежат X¯ (его дополнению). Следовательно, Х∪X¯=I.

Из симметрии данной формулы относительно Х и X¯ следует не только то, что X¯ является дополнением Х, но и что Х является дополнением X¯. Но дополнение X¯ есть X¯ ¯. Таким образом, X¯ ¯=X¯.

С помощью операции дополнения представим разность множеств:

X\Y = {x: x∈X и x∉Y} ={ x: x∈X и x∈Y¯ }, т.е. X\Y= Х∩Y¯.

Порядок выполнения операций:

  1. дополнение;
  2. пересечение;
  3. объединение, разность.

Для изменения порядка используют скобки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: